DOI QR코드

DOI QR Code

Experimental study on release of plastic particles from coastal sediments to fluid body

해안 유사에서 수체로의 플라스틱 입자 방출에 관한 실험적 연구

  • Hwang, Dongwook (Department of Civil & Environmental Engineering, Seoul National University) ;
  • Park, Yong Sung (Department of Civil & Environmental Engineering, Seoul National University)
  • 황동욱 (서울대학교 건설환경공학부) ;
  • 박용성 (서울대학교 건설환경공학부)
  • Received : 2022.08.19
  • Accepted : 2023.01.07
  • Published : 2023.02.28

Abstract

In marine environments, plastics have become more abundant due to increasing plastic use. Especially, in coastal regions, particles may remain for a long time, and they interact with flows, wind, sand and human activities. This study aimed thus to observe how plastic debris interacts with and escape from sediments. A series of experiments were conducted in order to gain a better understanding of particle release from coastal sediments into water body. An oscillating water tunnel was built for the experiments, and used to generate oscillatory flows of relatively high Reynolds number and induce sediment transport. Spherical plastic particles of three different sizes was used in lieu of plastic debris in environments. It was observed that release of the particles was directly related to change of bedform, which is in turn determined by the flow condition. Also smaller particles tend to escape the sediment more readily. Critical values for dimensionless parameters are proposed.

지속적으로 증가하는 플라스틱의 사용으로 인하여 현재 해안·해양 환경에서 플라스틱을 찾기란 어렵지 않은 일이 되었다. 하천을 통해 해양으로 유출된 플라스틱 폐기물은 해안 지역에서 장기간 머물며, 파랑, 바람, 유사, 인간 활동 등과 같은 다양한 요인들과 상호작용하며 물리적·화학적 변화를 겪게 된다. 이에, 실험적 연구를 통하여 해안 유사에서 수체로의 플라스틱 입자 방출 과정을 고찰하고자 하였다. 본 연구는 고 레이놀즈 수를 가지는 왕복 흐름과 유사 이동을 구현하기 위한 왕복흐름발생장치를 제작하여 진행되었고, 세 가지의 크기를 가지는 매끈한 구형의 플라스틱 입자를 사용하였다. 실험 결과, 유사 내 플라스틱 입자의 방출은 유사 이동에 가장 큰 영향을 받았으며, 이는 흐름의 세기에 비례한다. 더불어, 입자가 작을수록 더 많은 입자가 방출되었다. 결과를 종합하여 입자의 방출을 결정하는 무차원 매개변수들의 임계값을 제시하였다.

Keywords

Acknowledgement

본 연구는 서울대학교 신임교수 연구정착금으로 지원되는 연구비와 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. NRF-2020R1F1A1070390)을 받아 수행하였습니다. 또한 서울대학교 공학연구원의 지원에도 감사드립니다.

References

  1. Abreu, T., Michallet, H., Silva, P.A., Sancho, F., van der A, D.A., and Ruessink, B.G. (2013). "Bed shear stress under skewed and asymmetric oscillatory flow." Coastal Engineering, Vol. 73, pp. 1-10. https://doi.org/10.1016/j.coastaleng.2012.10.001
  2. Aguirre-Pe, J., Olivero, M.L., and Moncada, A.T. (2003). "Particle densimetric Froude number for estimating sediment transport." Journal of Hydraulic Engineering, Vol. 129, No. 6, pp. 428-437. https://doi.org/10.1061/(asce)0733-9429(2003)129:6(428)
  3. Ali, S.Z., and Dey, S. (2017). "Origin of the scaling laws of sediment transport." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 473, No. 2197, 20160785.
  4. Berni, C., Barthelemy, E., and Michallet, H. (2013). "Surf zone cross-shore boundary layer velocity asymmetry and skewness: An experimental study on a mobile bed." Journal of Geophysical Research: Oceans, Vol. 118, No. 4, pp. 2188-2200. https://doi.org/10.1002/jgrc.20125
  5. Blasing, M., and Amelung, W. (2018). "Plastics in soil: Analytical methods and possible sources." Science of the Total Environment, Vol. 612, pp. 422-435. https://doi.org/10.1016/j.scitotenv.2017.08.086
  6. Blondeaux, P., Vittori, G., Bruschi, A., Lalli, F., and Pesarino, V. (2012). "Steady streaming and sediment transport at the bottom of sea waves." Journal of Fluid Mechanics, Vol. 697, pp. 115-149. https://doi.org/10.1017/jfm.2012.50
  7. Blott, S., and Pye, K. (2001). "GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments." Earth Surface Processes and Landforms, Vol. 26, No. 11, pp. 1237-1248. https://doi.org/10.1002/esp.261
  8. Brennan, E., Wilcox, C., and Hardesty, B.D. (2018). "Connecting flux, deposition and resuspension in coastal debris surveys." Science of the Total Environment, Vol. 644, pp. 1019-1026. https://doi.org/10.1016/j.scitotenv.2018.06.352
  9. Cannas, S., Fastelli, P., Cristiana, G., and Renzi, M. (2017). "Plastic litter in sediments from the coasts of south Tuscany (Tyrrhenian Sea)." Marine Pollution Bulletin, Vol. 119. No. 1, pp. 372-375. https://doi.org/10.1016/j.marpolbul.2017.04.008
  10. Folk, R.L., and Ward, W.C. (1957). "Brazos River bar [Texas]; A study in significance of grain size parameters." Journal of Sedimentary Research, Vol. 27, No. 1, pp. 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  11. G20. (2017). Annex to G20 leaders declaration: G20 action plan on marine litter. Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety, 7, G20 Summit 2017, Hamburg, Germany.
  12. Garcia, M.H. (2008). Sedimentation engineering: Processes, measurements, modeling, and practice. American Society of Civil Engineers, New York, NY, U.S.
  13. GESAMP (2015). Source, fate and effects of microplastics in the marine environment: a global assessment. Journal Series GESAMP Reports and Studies No. 90, Edited by Kershaw, P.J., IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, London, UK, pp. 1-96.
  14. Geyer, R., Jambeck, J.R., and Law, K.L. (2017). "Production, use, and fate of all plastics ever made." Science Advances, Vol. 3, No. 7, e1700782.
  15. Hanvey, J.S., Lewis, P.J., Lavers, J.L., Crosbie, N.D., Pozo, K., and Clarke, B.O. (2017). "A review of analytical techniques for quantifying microplastics in sediments." Analytical Methods, Vol. 9, No. 9, pp. 1369-1383. https://doi.org/10.1039/C6AY02707E
  16. Hinata, H., Sagawa, N., Kataoka, T., and Takeoka, H. (2020). "Numerical modeling of the beach process of marine plastics: A probabilistic and diagnostic approach with a particle tracking method." Marine Pollution Bulletin, Vol. 152, 110910.
  17. Imhof, H.K., Schmid, J., Niessner, R., Ivleva, N.P., and Laforsch, C. (2012). "A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments." Limnology and Oceanography: Methods, Vol. 10, No. 7, pp. 524-537. https://doi.org/10.4319/lom.2012.10.524
  18. Kim, I.H., and Song, D.S. (2012). "Geographical distribution of sand particle sizes on GwangWon coast." Proceedings 2012 Congress of Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, pp. 407-410.
  19. Li, Y., Wang, X., Fu, W. Xia, X., Liu, C., Min, J., Zhang, W., Crittenden, J.C. (2019). "Interactions between nano/micro plastics and suspended sediment in water: Implications on aggregation and settling." Water Research, Vol. 161, pp. 486-495. https://doi.org/10.1016/j.watres.2019.06.018
  20. Nielsen, P. (1981). "Dynamics and geometry of wave-generated ripples." Journal of Geophysical Research, Vol. 86, No. C7, pp. 6467-6472. https://doi.org/10.1029/JC086iC07p06467
  21. Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport (Vol. 4). World Scientific, Singapore.
  22. Prata, J.C., da Costa, J.P., Duarte, A.C., and Rocha-Santos, T. (2019). "Methods for sampling and detection of microplastics in water and sediment: A critical review." TrAc - Trends in Analytical Chemistry, Vol. 110, pp. 150-159. https://doi.org/10.1016/j.trac.2018.10.029
  23. Rhew, H., and Kang, J. (2020). "Morphological and textural characteristics of the beach-dune system in South Korea, with the possibility of a dune type scheme based on grain-size trend." Journal of the Korean Geomorphological Association, Vol. 27, No. 3, pp. 53-73. https://doi.org/10.16968/JKGA.27.3.53
  24. Ribberink, J.S., and Al-Salem, A.A. (1994). "Sediment transport in oscillatory boundary layers in cases of rippled beds and sheet flow." Journal of Geophysical Research: Oceans, Vol. 99, No. C6, pp. 12707-12727. https://doi.org/10.1029/94JC00380
  25. Riley, N. (2001). "Steady streaming." Annual Review of Fluid Mechanics, Vol. 33, pp. 43-65. https://doi.org/10.1146/annurev.fluid.33.1.43
  26. Rodriguez-Abudo, S., Foster, D. L., and Henriquez, M. (2013). "Spatial variability of the wave bottom boundary layer over movable rippled beds." Journal of Geophysical Research: Oceans, Vol. 118, No. 7, pp. 3490-3506. https://doi.org/10.1002/jgrc.20256
  27. Taibi, N.-E., Bentaallah, M.E.A., Alomar, C., Compa, M., and Deudero, S. (2021). "Micro- and macro-plastics in beach sediment of the Algerian western coast: First data on distribution, characterization, and source." Marine Pollution Bulletin, Vol. 165, 112168.
  28. Thielicke, W., and Stamhuis, E.J. (2014). "PIVlab - Towards userfriendly, affordable and accurate digital particle image velocimetry in MATLAB." Journal of Open Research Software, Vol. 2, No. 1, e30.
  29. Turner, A., Amos, S.L., and Williams, T. (2021). "Coastal dunes as a sink and secondary source of marine plastics: A study at Perran Beach, southwest England." Marine Pollution Bulletin, Vol. 173, 113133.
  30. van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J., and Janssen, C.R. (2015). "Microplastics in sediments: A review of techniques, occurrence and effects." Marine Environmental Research, Vol. 111, pp. 5-17. doi: 10.1029/2006JF000614.
  31. van der Werf, J.J., Doucette, J.S., O'Donoghue, T., and Ribberink, J.S. (2007). "Detailed measurements of velocities and suspended sand concentrations over full-scale ripples in regular oscillatory flow." Journal of Geophysical Research: Earth Surface, Vol. 112, No. F2, F02012.
  32. Willis, K., Hardesty, B.D., Kriwoken, L., and Wilcox, C. (2017a). "Differentiating littering, urban runoff and marine transport as sources of marine debris in coastal and estuarine environments." Scientific Reports, Vol. 7, 44479.
  33. Willis, K.A., Eriksen, R., Wilcox, C., and Hardesty, B.D. (2017b). "Microplastic distribution at different sediment depths in an urban estuary." Frontiers in Marine Science, Vol. 4, 419.