• Title/Summary/Keyword: bearings

Search Result 1,692, Processing Time 0.025 seconds

A study on the uniformity of the electrodeposits in Pb-Sn-Cu ternary alloy plating (Pb-Sn-Cu삼원 합금 전착층의 균일성 연구)

  • NamGoong, E.;Gwon, Sik-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.18 no.3
    • /
    • pp.105-115
    • /
    • 1985
  • Lead-tin-copper ternary alloy electrodeposition is conducted onto the inner bore surface of plain bearings as an overlay in order to investigate the effect of slot width, current density and fluoboric acid concentration on the uniformity of overlay. The thickness of overlay is analyzed by means of current distribution resulting from the overvoltage of plating bath and the apparent distance between cathode and anode. The result demonstrate that the uniformity of overlay is remarkably dependent of the slot size and current density, but has little bearing on the fluoboric acid concentration over 100g/L. This present study indicates that uniform overlay is obtainable within the tolerable thickness of ${\pm}2{\mu}m$ by using the slot width of 22mm. The surface morphology examination also shows the important role of concentration polarization of the micro-uniformity of overlay. The micro-uniformity has improved at the low concentration polarization which resulted from operating at the low current density and high fluoboric acid concentration. The surface morphology of deposits exhibits the vivid pyramid crystalline in the plating condition of low concentration polarizatio and all deposits have columnar structure parallel to the applied electric field regardless of the electroplating condition used.

  • PDF

Improvement of Seismic Performance of Existing Bridges using Isolation (지진격리장치를 이용한 기존 교량의 내진성능 향상)

  • 한경봉;김민지;박선규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • The seismic performance evaluation and retrofit process are very important in old existing bridges. If the result is not appropriate. then a retrofit process are required. Among various retrofit methods, the seismic isolation is a very useful method. because it can be applied by replacing old bridge bearings. In this study, the effectiveness of seismic isolation is rationally verified. For this purpose, two seismic isolations used widely are selected and non-linear static and dynamic analyses are performed. The responses of existing bridges are compared with those of retrofited bridges by seismic isolation bridge for earthquake of target level. and seismic performances are evaluated.

Design of Supertall Structures with Connected Towers the Structural Solution to the Development of Sky Cities

  • Wenwei, Jiang;Qi, Yu;Lianjin, Bao;Mingguo, Liu;Jun, Ji;Dasui, Wang
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.211-220
    • /
    • 2019
  • Three cases of supertall connected structures are presented and each of them represents a quite style. The first case is a strong-connected structure. The coupling function of towers and connector contributes a lot to the structural stiffness and stability. Its special construction scheme had great impact on the construction quality and the structural safety, and must be accurately considered. For the second case which is a weak-connected structure, the influences of different connecting modes to the structural dynamic characteristic were explained. Then the combined bearings were proposed to achieve the design presume. In the third case which represents the multi-supported structures, the structural distinctive mechanical properties were discussed. For the structural state during construction process is quite different from that in final service condition, two construction procedures were simulated to get an optimal one. Although there are great challenges to designers, the advantages of the supertall connected buildings are obvious. Further work is needed in this area to adapt to the development of future cities.

Seismic behavior of isolated bridges with additional damping under far-field and near fault ground motion

  • Losanno, Daniele;Hadad, Houman A.;Serino, Giorgio
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.119-130
    • /
    • 2017
  • This paper presents a numerical investigation on the seismic behavior of isolated bridges with supplemental viscous damping. Usually very large displacements make seismic isolation an unfeasible solution due to boundary conditions, especially in case of existing bridges or high risk seismic regions. First, a suggested optimal design procedure is introduced, then seismic performance of three real bridges with different isolation systems and damping levels is investigated. Each bridge is studied in four different configurations: simply supported (SSB), isolated with 10% damping (IB), isolated with 30% damping (LRB) and isolated with optimal supplemental damping ratio (IDB). Two of the case studies are investigated under spectrum compatible far-field ground motions, while the third one is subjected to near-fault strong motions. With respect to different design strategies proposed by other authors, results of the analysis demonstrated that an isolated bridge equipped with HDLRBs and a total equivalent damping ratio of 70% represents a very effective design solution. Thanks to confirmed effective performance in terms of base shear mitigation and displacement reduction under both far field and near fault ground motions, as well as for both simply supported and continuous bridges, the suggested control system provides robustness and reliability in terms of seismic performance also resulting cost effective.

Corrosion Failure Diagnosis of Rolling Bearing with SVM (SVM 기법을 적용한 구름베어링의 부식 고장진단)

  • Go, Jeong-Il;Lee, Eui-Young;Lee, Min-Jae;Choi, Seong-Dae;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.35-41
    • /
    • 2021
  • A rotor is a crucial component in various mechanical assemblies. Additionally, high-speed and high-efficiency components are required in the automotive industry, manufacturing industry, and turbine systems. In particular, the failure of high-speed rotating bearings has catastrophic effects on auxiliary systems. Therefore, bearing reliability and fault diagnosis are essential for bearing maintenance. In this work, we performed failure mode and effect analysis on bearing rotors and determined that corrosion is the most critical failure type. Furthermore, we conducted experiments to extract vibration characteristic data and preprocess the vibration data through principle component analysis. Finally, we applied a machine learning algorithm called support vector machine to diagnose the failure and observed a classification performance of 98%.

Vibration Evaluation of Concrete Mixer Reducer (콘크리트 믹서 감속기의 진동 평가)

  • Cho, Yonsang;Bae, MyoungHo
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.71-76
    • /
    • 2019
  • The differential planetary gear reducer as a main component of the concrete mixer driving mechanism requires a strong torque to mix concrete compounds. As this component is currently dependent on imports, it is necessary to develop it by conducting a study on vibration analysis and the resonance problem. The noise and vibration of a concrete mixer reducer increase owing to the transmission error of planetary gears, and the damage of components occurs owing to the problems in design and production. In this study, the tooth-passing frequency is calculated to evaluate the noise and vibration of a mixer reducer, and a fast Fourier transform (FFT) analysis is conducted through a vibration test using an acceleration sensor. The vibration of the reducer is measured at three points of input and output of the shaft and planetary gear housing with fixed and variable revolutions per minute. The operating conditions of gears and bearings are evaluated by performing the FFT analysis, and the resonance problem is verified. The results show that No. 1 pinion and ring gears revolve disproportionately. The amplitude values appear high, and the wear of tooth faces occur in tooth-passing frequencies and harmonic components of No. 1 and No. 2 pinion-ring gears. Therefore, we conclude that design changes in the reducer and a correction of tooth profiles are required.

Optimum Shoulder Height Design using Non-dimensional Shape Variables of Ball Bearing (볼 베어링의 무차원 형상변수를 이용한 최적 턱 높이 설계)

  • Choi, DongChul;Kim, TaeWan
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • This paper presents an optimization method to determine the shoulder height of an angular contact ball bearing by 3D contact analysis using nondimensional-shaped variables. The load analysis of the ball bearing is performed to calculate the internal load distributions and contact angles of each rolling element. From the results of bearing load analysis and the contact geometry between the ball and inner/outer raceway, 3D contact analyses using influence function are conducted. The nondimensional shoulder height and nondimensional load are defined to give the generalized results. The relationship between the shoulder height and radius of curvature of the shoulder under various loading conditions is investigated in order to propose a design method for the two design parameters. Using nondimensional parameters, the critical shoulder heights are optimized with loads, contact angles, and conformity ratios. We also develop contour maps of the critical shoulder height as functions of internal loads and contact angles for the different contact angles using nondimensional parameters. The results show that the dimensionless shoulder height increased as the contact angle and dimensionless load increased. Conversely, when the conformity ratio increased, the critical shoulder height decreased. Therefore, if the contact angle is reduced and the conformity ratio is increased within the allowable range, it will be an efficient design to reduce the shoulder height of ball bearings.

Large strain nonlinear model of lead rubber bearings for beyond design basis earthquakes

  • Eem, Seunghyun;Hahm, Daegi
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.600-606
    • /
    • 2019
  • Studies on the application of the lead rubber bearing (LRB) isolation system to nuclear power plants are being carried out as one of the measures to improve seismic performance. Nuclear power plants with isolation systems require seismic probabilistic safety assessments, for which the seismic fragility of the structures, systems, and components needs be calculated, including for beyond design basis earthquakes. To this end, seismic response analyses are required, where it can be seen that the behaviors of the isolation system components govern the overall seismic response of an isolated plant. The numerical model of the LRB used in these seismic response analyses plays an important role, but in most cases, the extreme performance of the LRB has not been well studied. The current work therefore develops an extreme nonlinear numerical model that can express the seismic response of the LRB for beyond design basis earthquakes. A full-scale LRB was fabricated and dynamically tested with various input conditions, and test results confirmed that the developed numerical model better represents the behavior of the LRB over previous models. Subsequent seismic response analyses of isolated nuclear power plants using the model developed here are expected to provide more accurate results for seismic probabilistic safety assessments.

Dynamic assessment of the seismic isolation influence for various aircraft impact loads on the CPR1000 containment

  • Mei, Runyu;Li, Jianbo;Lin, Gao;Zhu, Xiuyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1387-1401
    • /
    • 2018
  • An aircraft impact (AI) on a nuclear power plant (NPP) is considered to be a beyond-design-basis event that draws considerable attention in the nuclear field. As some NPPs have already adopted the seismic isolation technology, and there are relevant standards to guide the application of this technology in future NPPs, a new challenge is that nuclear power engineers have to determine a reasonable method for performing AI analysis of base-isolated NPPs. Hence, dynamic influences of the seismic isolation on the vibration and structural damage characteristics of the base-isolated CPR1000 containment are studied under various aircraft loads. Unlike the seismic case, the impact energy of AI is directly impacting on the superstructure. Under the coupled influence of the seismic isolation and the various AI load, the flexible isolation layer weakens the constraint function of the foundation on the superstructure, the results show that the seismic isolation bearings will produce a large horizontal deformation if the AI load is large enough, the acceleration response at the base-mat will also be significantly affected by the different horizontal stiffness of the isolation bearing. These concerns require consideration during the design of the seismic isolation system.

Development of Marine Turning Gear Based on Helical Planetary Reducer (헬리컬 유성감속기 기반 선박용 터닝기어 개발)

  • Kim, Kun-Woo;Lee, Jae-Wook;Jang, Jin-Seok;Choi, Chang-Young;Hong, Jong-Hae;Lee, Kang-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.36-43
    • /
    • 2020
  • A marine turning gear is the main auxiliary machine that enables the disassembly of and maintenance on the main engines. In this study, a marine turning gear based on a helical planetary reducer was developed through analysis of a marine turning gear based on a spur planetary reducer. Nonlinear numerical analysis was performed to determine the ideal contact ratio between the sun gear and the idle gear. Based on this, the surface durability, tooth bending strength, and contact ratio were calculated. In addition, the helix direction was selected to utilize the existing bearings. Gears were manufactured based on the helical gear design values, and the turning gear was evaluated using the FTA standards of MAN Co. Ltd. As a result, a lifetime of 3,000 to 5,000 hours was verified, the maximum torque measured was 105kNm, and the efficiency was measured to be 87.4%.