• Title/Summary/Keyword: bearingless rotor

Search Result 42, Processing Time 0.031 seconds

Aeroelastic Stability Analysis of Composite Bearingless Rotor Blades in Hover (복합재 무베어링 로우터 블레이드의 정지 비행시 공력탄성학적 안정성 해석)

  • Lim In-Gyu;Choi Ji-Hoon;Lee In;Han Jae-Hung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.83-86
    • /
    • 2004
  • The aeroelastic stability analysis of composite bearingless rotors is investigated using a large deflection beam theory in hover. The bearingless rotor configuration consists of a single flexbeam with a wrap-around type torque tube and the pitch links located at the leading edge and trailing edge of the torque tube root. For the analysis of composite bearingless rotors, flexbeam is assumed to be a rectangular section made of laminate. Two-dimensional quasi-steady strip theory and Loewy's aerodynamic theory with the lift deficiency function are used for unsteady aerodynamic computation. The finite element equations of motion for beams are obtained using Hamilton's principle. Numerical results of selected bearingless rotor configurations are obtained for the lay-up of laminae in the flexbeam and pitch links location.

  • PDF

Fatigue Safe Life Analysis of Helicopter Bearingless Rotor Hub Composite Flexbeam (헬리콥터 무베어링 로터 허브 복합재 유연보 피로 안전수명 해석)

  • Kim, Taejoo;Kee, Youngjoong;Kim, Deog-Kwan;Kim, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.561-568
    • /
    • 2013
  • After we designed Bearingless rotor hub system for 7,000lb class helicopter, flexbeam fatigue analysis was conducted for validation of requirement life time 8,000 hours. sectional structural analysis method applying elastic beam model was used. Fatigue analysis for two sections of flexbeam which were expected to weak to fatigue damage from result of static analysis was conducted. Extension, bending and torsion stiffness of flexbeam section shape was calculated using VABS for structure analysis. S-N curve of two composite material which composed flexbeam was generated using wohler equation. Load analysis of bearingless rotor system was conducted using CAMRAD II and load analysis result was applied HELIX/FELIX standard load spectrum to generate bearingless rotor system load spectrum which was used flexbeam fatigue safe life analysis.

Dynamic Characteristic Study of Hingeless Blade Stiffness Reinforcement for Bearingless Rotor Whirl Tower Test (무베어링 로터 훨타워 시험을 위한 무힌지 블레이드 강성보강에 따른 동특성 연구)

  • Kim, Tae-Joo;Yun, Chul-Yong;Kee, Young-Joong;Kim, Seung-Ho;Jung, Sung-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.622-627
    • /
    • 2012
  • During helicopter rotor system development process, whirl tower test is conducted basically. For conducting whirl tower test during bearingless hub development process, design new blade or using existing blade with repair or remodeling. Because simple shape and efficient aerodynamic characteristic, BO-105 blade is used for hub system development widely. Originally BO-105 blade is used for hingeless hub, ho flap stiffness and lag stiffness on blade root area is relatively low. So applying BO-105 blade to bearingless hub whirl tower test, root area have to be reinforce. In this process, blade root area's section property will be changed. In this paper, suggest reinforcement method of BO-105 blade root area and study dynamic characteristic of bearingless rotor system with reinforcement BO-105 blade.

  • PDF

Modeling of a bearingless motor using distributed magnetic circuit (분산 자기 회로를 이용한 베어링리스 모터의 모델링)

  • 박창용;박수진;노명규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.212-216
    • /
    • 2004
  • Bearingless motors are the rotational electric machine which utilize a common magnetic structure for rotation and magnetic suspension. Since the bearing function is combined with the motor, the shaft length can be shortened resulting in higher critical speeds. Relationship between suspension force and current of bearingless motor is clearly derived by prior research. However, relationship between displacement of rotor and suspension force is not precisely defined. In this paper, we present model of bearingless motor describing the radial force variation due to the movement of the rotor. Using a distributed magnetic circuit and maxwell stress tensor, we derived a mathematical expression for the radial force. For a slotless bearingless motor, we are able to find an analytical model presented in the form of stiffness. For a slotted motor, we can compute the stiffness by semi-analytical analysis. This model is validated by a finite-element-analysis.

  • PDF

Structural Dynamic Analysis of Bearingless Rotor System with Cross-shaped Composite Flexbeam (십자형 복합재 유연보 장착 무베어링 로터 시스템 구조동역학 해석)

  • Kim Do-Hyung;Lim In-Gyu;Lee Myung-Kyu;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.108-111
    • /
    • 2004
  • Structural dynamic characteristics and aeroelastic stability of a small-scale bearingless rotor system have been investigated. A flexbeam is one of the most important component of bearingless hub system. It must have sufficient torsional flexibility as well as baseline stiffness in order to produce feathering motion. In the present paper, a cross-shaped composite flexbeam has been proposed for a guarantee of torsional flexibility and flapwise and lagwise bending stiffness. One dimensional elastic beam model was used for the construction of a structural model. Equivalent isotropic sectional stiffness was used in the blade model, and the flexbeam was regarded as anisotropic; which has ten independent stiffness quantities. CAMRAD II has been used for the analysis of structural dynamic characteristics of the bearingless rotor system. Rotational natural frequencies and aeroelastic stability at hovering have been investigated. Analysis result shows that the cross-shaped flexbeam has the rotational natural frequency tuning capacity.

  • PDF

Hub Parametric Investigation of Main Rotor Stability of Bearingless Helicopter (무베어링 헬리콥터 주 로터의 허브 파라미터 변화에 따른 로터 안정성 특성 해석)

  • Yun, Chul-Yong;Kee, Young-Jung;Kim, Tae-Joo;Kim, Deog-Kwan;Kim, Seung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.784-790
    • /
    • 2012
  • This paper describes a stability and dynamic characteristics of bearingless helicopter main rotor in hover. Baseline rotor configuration is defined and modal analysis for the configuration is taken to verify the dynamic characteristics. The kinematic pitch-lag couplings through ways of pitch link installation are analyzed to know effects on loads, frequencies and stability. The effects of pitch link attachments in spanwise direction and chordwise direction as well as pitch link inclination on thrust, power, flpa-lag-pitch mode frequencies and inplane damping are examined. Pitch link at trailing edge location in chordwise direction has influence on aeroelastic stability of the rotor. Also, the pitch link with negative inclination angle makes inplane damping increase.

Hub Parametric Investigation of Main Rotor Stability of Bearingless Helicopter (무베어링 헬리콥터 주 로터의 허브 파라미터 변화에 따른 로터 안정성 특성 해석)

  • Yun, Chul-Yong;Kee, Young-Jung;Kim, Tae-Joo;Kim, Deog-Kwan;Kim, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.394-399
    • /
    • 2012
  • This paper describes a stability and dynamic characteristics of bearingless helicopter main rotor in hover. Baseline rotor configuration is defined and modal analysis for the configuration is taken to verify the dynamic characteristics. The kinematic pitch-lag couplings through ways of pitch link installation are analyzed to know effects on loads, frequencies and stability. The effects of pitch link attachments in spanwise direction and chordwise direction as well as pitch link inclination on thrust, power, flpa-lag-pitch mode frequencies and inplane damping are examined. Pitch link at trailing edge location in chordwise direction has influence on aeroelastic stability of the rotor. Also, the pitch link with negative inclination angle makes inplane damping increase.

  • PDF

Design and Analysis of Hybrid Stator Bearingless SRM

  • Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.94-103
    • /
    • 2011
  • This paper presents a novel bearingless switched reluctance motor (BLSRM) with decoupled torque and suspending stator poles. BLSRM is different from conventional bearingless switched reluctance motors (SRMs) because its suspending poles are separated from the torque poles. Perpendicularly placed suspending poles are designed to produce a continuous radial force to suspend the rotor. Due to the independent suspending and torque poles, BLSRM produces a suspending force with excellent linearity according to the rotor position and independent characteristics of the torque current. The air-gap is easier to control than in conventional SRMs with their linear and independent characteristics. Furthermore, to verify the proposed structure, a mathematical model for the suspending force is derived. Finite element analysis is also employed to compare BLSRM and conventional SRMs expressions of suspending force. A prototype motoris designed and manufactured to verify the effectiveness of the proposed bearingless structure.

Rotor Pole Design and Characteristics Analysis of the Bearingless Switched Reluctance Motor Considering Fringing Flux (프린징 자속을 고려한 베어링리스 SRM 회전자극 설계 및 특성분석)

  • Lee, Chan-Kyo;Oh, Ju-Hwan;Shin, Kwang-Chul;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.57-64
    • /
    • 2010
  • In this paper, a novel Bearingless Switched Reluctance Motor(BLSRM) with the shoe rotor pole in order to minimize the torque ripple and the suspension force ripple at an overlap position is proposed. For reduction the torque ripple and the suspension force ripple at an overlap position, the fringing flux is used for the main flux. This configuration of the rotor pole results in more average torque with high suspension force. In addition, this paper is compared the transient characteristics using the inductance look-up table. The torque, radial force and flux density are analyzed by finite element method.

Dynamic Characteristics of Helicopter Bearingless Main Rotor (헬리콥터 무베어링 주로터의 동특성 시험)

  • Yun, Chul Yong;Song, Keun Woong;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.439-446
    • /
    • 2016
  • The characteristics of bearingless main rotor of helicopter are investigated through non-rotating tests and rotating tests. The stiffness and natural frequencies of rotor blades, flexbeam, and torque tube which are core components of baearingless rotor are measured to obtain input material properties for rotor analysis. The functional test on ground for assembly of one hub with damper, snubber, and no blade is carried out to check interfaces between components, kinematics of components, and pitch motion ranges under applied loads including centrifugal load. The 4-bladed bearingless rotor with 5.82m of rotor radius is tested on the whirl tower with rotation plane of 9.65m height. The thrust and power are measured to obtain hover performance and the frequencies and dampings of the rotor are obtained by excitation of cyclic pitch by hydraulic actuators.