• Title/Summary/Keyword: bearing system

Search Result 2,226, Processing Time 0.029 seconds

Stepwise Decision making Methodology Based on Artificial Intelligence: An Application to Bearing Design (인공지능에 기반한 단계적 의사결정방법 : 베어링 설계에의 적용)

  • 서태설;한순홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.100-109
    • /
    • 1999
  • The bearing design includes the steps of selection bering type, selection bearing subtype, and determining the peripheral equipments. In this paper decision making methodologies are compared to propose a stepwise decision methodology to the bearing selection problem. An artificial neural network trained with design cases is used for selecting a bearing type in the first step. Then the subtype of the bearing is selected using the weighting method, high is a kind of multi-criteria decision making method. Finally, the types of peripheral equipments such as lubrication devices, seals and bearing housings are determined using a rule-based expert system.

  • PDF

A Design of Horizontal-Type 5DOF Magnetic Bearing System (수평형 5축 자기 베어링 시스템 설계)

  • Kim, Jong-Moon;Kang, Do-Hyun;Park, Min-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.732-734
    • /
    • 2003
  • In this paper, a design of horizontal-type 5DOF magnetic bearing is presented. To implement the non-contact bearing, an active magnetic bearing using electromagnet is used and finite element method(FEM) is chosen to design the bearing magnet. Two radial bearing and one thrust bearing is designed to implement 5DOF operation. And three-phase induction motor is used as a driving motor. The design method for the magnetic bearing system is described.

  • PDF

Development of Diagnosis System for Hub Bearing Fault in Driving Vehicle (차량 주행 상태에서 허브 베어링 이상을 진단할 수 있는 장치 개발)

  • Im, Jong-Soon;Park, Ji-Hun;Kim, Jin-Yong;Yun, Han-Soo;Cho, Yong-Bum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.72-77
    • /
    • 2011
  • In this paper, we propose effective diagnosis algorithm for hub bearing fault in driving vehicle using acceleration signal and wheel speed signal measured in hub bearing unit or knuckle. This algorithm consists of differential, envelope and power spectrum method. We developed diagnosis system for realizing proposed algorithm. This system consists of input device including acceleration sensor and wheel speed sensor, calculation device using Digital Signal Processor (DSP) and display device using Personal Digital Assistant (PDA). Using this diagnosis system, a driver can see hub bearing fault(flaking) from the vibration in driving vehicle. With early repairing, he can keep good ride feeling and prevent accident of vehicle resulting from hub bearing fault.

Rotordynamic Design and Analysis of the Rotor-Bearing System of a 500Wh Flywheel Energy Storage Device (플라이휠 에너지 저장장치 회전체계의 동역학적 설계및 해석)

  • 최상규;김영철;경진호
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 1998
  • A 500Wh class high-speed Flywheel Energy Storage System (FESS) driven by a built-in BLDC motor/generator has been designed, which runs from 30000 to 60000rpm nominally. Due to the motor/generator inside, the flywheel rotor made of composites supported by PM/EM hybrid bearing system has a shape of bell or pendulum and thus requires accurate rotordynamic analysis and prediction of its dynamic behavior to secure the operating reliability. Rotordynamic analyses of the flywheel rotor-bearing system revealed that the bell shaped rotor has two conical rigid-body modes in the system operating range and the first conical mode, of which nodal point lies in the radial EM bearing position, can adversely affect the dynamic response of the rotor at the corresponding critical speed. To eliminate the possibility of wild behavior of the rotor, two guide bearings are adopted at the upper end of the rotor and motor/generator. It was also revealed that the EM bearing stiffness if 0.5~1.0E+6 N/m and damping of 2000 Ns/m are favirable for smooth operation of the system around the 2nd critical speed.

  • PDF

Iterative Control-Relevant Identification and Controller Enhancement of MIMO Magnetic Bearing Rigid Rotor (반복적 설계 방식을 사용한 다중입출력 자기베어링 시스템의 식별 및 제어기 성능 향상)

  • Han, Dong-Chul;Lee, Sang-Wook;Ahn, Hyeong-Joon;Lee, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.493-498
    • /
    • 2000
  • The magnetic bearing systems are intrinsically unstable, and need the feedback control of electromagnetic forces with measured displacements. So the controller design plays an important role in constructing high performance magnetic bearing system. In case of magnetic bearing systems, the order of identified model is high because of unknown dynamics included in closed loop systems - such as sensor dynamics, actuator dynamics-and non-linearity of magnetic bearings itself. "Identification for control" - joint optimization of system identification and controller design- is proposed to get the limited-order model which is suited for the design of high-performance controller. We applied the joint identification/controller design scheme to MIMO rigid rotor system supported by magnetic bearings. Firs, we designed controller of a nonlinear simulation model of MIMO magnetic bearing system with this scheme and proved its feasibility. Then, we performed experiments on MIMO rigid rotor system supported by magnetic bearings, and the performance of closed-loop system is improved gradually during the iteration.

  • PDF

The Identification of the Magnetic Bearing Control System's Parameters using RCGA (실수코딩 유전알고리즘을 이용한 자기베어링 제어시스템 파라미터의 동정)

  • Jeong, H.H.;Kim, Y.B.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.68-73
    • /
    • 2009
  • The mathematical model has a different response character with the real system because this mathematical model has the modeling errors and the imprecise value of system's parameters. Therefore to find the value of system parameters as possible as near by real value in the model is necessary to design the controlled system. This study concern about the identification method to estimate the parameter for the magnetic bearing system with RCGA(Real Coded Genetic Algorithm). Firstly, we will get the mathematical model from the current amplifier circuit and the magnetic bearing system. Secondly we will get the step response data in this circuit and system. Finally, we will estimate the unknown parameter's value from the data.

  • PDF

Study on Dynamic Characteristics of Spindle-bearing System Subjected to Radial Load (경방향 하중을 받는 스핀들 베어링 계의 동특성 연구)

  • Choi, Chun-Suk;Hong, Seong-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.740-746
    • /
    • 2013
  • Angular contact ball bearings are often adopted for a high-speed spindle owing to their durability against axial and radial loads. The dynamic characteristics of an angular contact ball bearing, however, are very complicated because they are dependent on the applied loads as well as on the system configuration. This study systematically analyzes the radial-load-dependent characteristics of spindles as well as angular contact ball bearings. Toward this end, a spindle dynamic model along with the bearing dynamics model is established. An iterative solution algorithm is implemented to resolve the statically indeterminate problem associated with spindle-bearing systems subjected to radial load. Two numerical examples are provided to investigate the spindle and bearing characteristics as a function of radial load with regard to the system configuration.

Permanent Magnet Combined Thrust Magnetic Bearing Simulation and Experiment (영구자석조합형 축방향 자기베어링 시뮬레이션 및 실험)

  • Park, Byeong-Cheol;Jung, Se-Yong;Han, Sang-Chul;Lee, Jeong-Phil;Han, Young-Hee;Park, Byung-Jun
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.167-173
    • /
    • 2011
  • In this paper, an actuator model of the thrust magnetic bearing for the flywheel energy storage is derived using magnetic circuit theory. And we compared this result with finite element magnetic field analysis result. Based on the actuator model, we made a simulation model of the thrust magnetic bearing system. We showed the closed loop transfer function and sensitivity function of the thrust magnetic bearing system using both the simulation model and the experiment. The experimental result at rotation velocity 18,000rpm of thrust magnetic bearing system is included.

Performance of Built-in Capacitance Type Transducer of a Magnetic Bearing System (캐패시턴스형 센서가 내장된 자기베어링 시스템의 작동성능에 관한 연구)

  • 장인배;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2082-2088
    • /
    • 1995
  • In this paper, we designed and fabricated the magnetic bearings and built-in type cylindrical capacitive transducers for improving the vibration characteristics of rotating shaft. The eddy current and magnetic field from the electromagnet of the bearing don't affect the measuring signal of the capacitive type transducers so that it is possible to locate the capacitive sensor plates around the magnetic bearing poles and can improve the spillover problem which is induced by the noncollocation of the sensors and actuators. According to the sensitivity calibration schemes using a X-Y table, the cylindrical capacitive transducers have a good linearities in the .+-.70.mu.m range from the geometric center of the sensor plates. The measured results also show high displacement sensitivities of the sensors. According to the performance test of the magnetic bearing which is controlled by the analog PD controllers, we found that the built-in capacitive transducer system successfully measures the journal displacement in the magnetic field and therefore the magnetic bearing system supports the rotating shaft up to 12,000 rpm.

The Influence of Main Bearing Stiffness on the Gearbox of 3 Point Suspension Wind Turbine Drive Train (메인 베어링 강성이 풍력발전기용 3점 지지 드라이브 트레인의 기어박스에 미치는 영향)

  • Nam, Ju Seok;Nam, Yong Yun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.278-286
    • /
    • 2015
  • The effects of the main bearing stiffness combined with vertical non-torque force on the input load and shaft deflection of a gearbox were investigated for the three-point suspension drive train of a wind turbine. A finite element analysis model for the drive train was studied experimentally, and its applicability to the present study was verified. The results show that, as the main bearing stiffness is increased, the input load of the gearbox decreases, whereas the input shaft deflection increases. The stiffness component for the pitch moment has the largest influence on the gearbox input load. Although the gearbox life increases at a higher main bearing stiffness, the economic efficiency and durability of the entire drive train system should also be considered in the selection of the main bearing stiffness.