• Title/Summary/Keyword: bearing strength

Search Result 994, Processing Time 0.03 seconds

Effects of thermal aging on mechanical properties of laminated lead and natural rubber bearing

  • Kim, Dookie;Oh, Ju;Do, Jeongyun;Park, Jinyoung
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.127-140
    • /
    • 2014
  • Laminated rubber bearing is very popular base isolation of earthquake engineering pertaining to the passive structural vibration control technologies. Rubber used in fabricating NRB and LRB can be easily attacked by various environmental factors such as oxygen, heat, light, dynamic strain, and organic liquids. Among these factors, this study carried out thermal aging test to investigate the effect of thermal aging on the mechanical properties of laminated rubber bearings in accelerated exposure condition of $70^{\circ}C$ temperature for 168 hours. The compressive-shear test was carried out to identify the variation of compressive and shear properties of the rubber bearings before and after thermal aging. In contrast to tensile strength and elongation tests, the hardness of rubber materials showed the increasing tendency dependent on exposure temperature and period. Based on the test results, the property changes of rubber bearing mainly aged by heat are quantitatively presented.

Evaluation on Bearing Capacity of End Girder Member with Local Corrosion (지점부 부재의 부식손상에 따른 강거더 단부 지압강도 평가)

  • Ahn, Jin Hee;Lee, Won Hong;Kim, In Tae;Jeong, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.74-82
    • /
    • 2017
  • Localized corrosions damages in their structural sections can be occurred affected by installed environment conditions with high temperature as near the coastline and humidity or their poor maintenance situation. In bearing supports of steel bridges, especially, lower web and vertical stiffener in end girder support can be easily corroded because of relatively higher humidity due to the narrow space in the end of girder and the wetted accumulated sediments affected by rain water or antifreezing admixture leaked from expansion joint. It can be related to change in their structural performance. In this study, thus, bearing strength test specimens were fabricated considering corrosion damage in the web and vertical stiffeners and the change in their bearing strengths were experimentally evaluated. From the test results, localized corrosion damage of structural members in the end girder affected the bearing strength of end girder support, especially, localized corrosion damage of the vertical stiffener relatively highly affected their bearing strengths.

Strength Prediction of Mechanically Fastened Carbon/Epoxy Joints (탄소/에폭시 복합재료 구조물의 기계적 결합에 대한 강도 예측)

  • 김기범;이미나;공창덕
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.269-279
    • /
    • 1997
  • An investigation was peformed to study the predicting the joint strength of mechanical fasteners. Bearing failure is most important failure mode for designing joint. So in this study, the prediction method in consideration with bearing failure was chosen. In the proposed method, the characteristic length is combined with the Yamada-Sun failure criterion, Tsai-Hill failure criterion and characteristic length for Tension and Compression is determined from investigation. Especially the length of compression is determined from the "bearing failure test" that newly conceived to take bearing failure into consideration. The proposed prediction method was applied to quasi-isotropic carbon/epoxy joint showing net-tension and bearing failure experimentally. Good agreement was found between the predicted and experimental result for each joint geometry.

  • PDF

The Effect of Circulat Hole Size and Distribution on Strength of Braided Composite (브레이드 복합재료의 원공의 크기와 분포가 재료강도에 미치는 영향)

  • Lee, Gyeong-U;Gang, Tae-Jin
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.253-258
    • /
    • 1994
  • The effect of hole size and hole-to-hole distance in the braided and laminated composite was studied in terms of tensile strength, pin bearing strength, and flexural strength of S2-glass fiber braided polyester. The tensile strength reduction with hole size was well fitted with he Whitney and Nuismer's prediction for the laminated composite. The characteristic distance was measured to be about 1.6mm for braided composite and 1.8mm for laminated one. The effect of distance between the centers of two circu lar holes on tensile strength was negligible when the distance between these two holes was larger than 4 times of the diameter of circular hole for both braided and laminated composite. The side effect was diminished when the center of hole was located 3 times farther than the diamet.er of the hole. The pin bearing strengths was decreased with the size of pin hole for both braided and laminated composite.

  • PDF

The effect of addendum modification on bearing load in marine reduction gears (박용함속치차장치에서 전위가 베어링하중에 미치는 영향)

  • 민우홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.74-80
    • /
    • 1984
  • In the reduction gears for marine propulsion engine such as turbine or high speed diesel engine, the standard involute double helical gears are generally used. However the addendum modification gear can be used in the reduction gear as it has flexibility for gear design on the tooth strength, scoring and operating noise. In this case, the determination of gear shaft bearing load is difficult by the alternation of operating pressure angle. In this paper, the formulas of bearing load according to the arrangements of the reduction gears are derived and the diagrams of operating pressure angle according to the modification coefficient are presented.

  • PDF

Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines

  • Shariati, Mahdi;Naghipour, Morteza;Yousofizinsaz, Ghazaleh;Toghroli, Ali;Tabarestani, Nima Pahlavannejad
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.377-391
    • /
    • 2020
  • A concrete filled steel tube (CFT) column with stiffeners has preferable behavior subjected to axial loading condition due to delay local buckling of the steel wall than traditional CFT columns without stiffeners. Welding lines in welded built-up steel box columns is expected to behave as longitudinal stiffeners. This study has presented a numerical investigation into the behavior of built-up concrete filled steel tube columns under axial pressure. At first stage, a finite element model (FE) has been built to simulate the behavior of built-up CFT columns. Comparing the results of FE and test has shown that numerical model passes the desired conditions and could accurately predict the axial performance of CFT column. Also, by the raise of steel tube thickness, the load bearing capacity of columns has been increased due to higher confinement effect. Also, the raise of concrete strength with greater cross section is led to a higher load bearing capacity compared to the steel tube thickness increment. In CFT columns with greater cross section, concrete strength has a higher influence on load bearing capacity which is noticeable in columns with more welding lines.

Performance of BMSC column with large eccentricity under natural exposure conditions

  • Ma, Haiyan;Zeng, Xiangchao;Yu, Hongfa;Yue, Peng;Zhu, Haiwei;Wu, Chengyou
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.541-550
    • /
    • 2020
  • As a new type of concrete material, basic magnesium sulfate cement concrete (BMSC) has the advantages, such as early strength, high strength, good toughness and crack resistance. However, it is unclear about the degradation of the mechanical properties of BMSC columns, which is exposed to the natural environment for several years. In order to apply this new concrete to practical engineering, six large-eccentricity compressive columns of BMSC were studied. The mechanical properties such as the crack propagation, failure morphology, lateral displacement and bearing capacity of BMSC column were studied. The results show that the degradation rate of ultimate load of BMSC column is from 6% to 7%. The degradation rate of the stiffness of the column is from 6% to 13%. With the increase of compressive strength of BMSC, the axial displacement and lateral displacement are gradually reduced. The calculation model of bearing capacity of the BMSC column under the large eccentric compression is proposed. This paper provides a reference for the application of BMSC columns in the civil engineering.

Failure Behavior of Pin-jointed Carbon/Epoxy Composites under Hygrothermal Environmentals (열습환경을 고려한 탄소섬유/에폭시 복합재의 핀 체결부 파괴거동)

  • Kim, Chan-Gyu;Hwang, Young-Eun;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.411-413
    • /
    • 2012
  • This study has been investigated about hygrothermal environmental effects on the pin-joined carbon/epoxy composites through acoustic emission technique. The specimens were classified as three types for pin loading test : Base (before immersion), RT (room temperature immersion), HT ($75^{\circ}C$ immersion). As a results, the bearing strength of RT specimens was weakly decreased than that of base specimens. The bearing strength of HT specimens was greatly decreased than that of Base and RT specimens due to effects of simultaneous moisture and higher temperature. Also, the results from cumulative hit of acoustic emission indicated that AE events induced by matrix cracks of HT specimens was lower than that of base specimens.

  • PDF

Bearing capacity of a Flysch rock mass from the characterization of the laboratory physical properties and the Osterberg test

  • Hernan Patino;Ruben A. Galindo
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.573-594
    • /
    • 2024
  • This article presents a research study, with both laboratory and field tests, of a deep foundation in a markedly anisotropic medium. Particularly it has focused on the evaluation of the behavior of a pile, one meter in diameter, embedded in a rocky environment with difficult conditions, in the Flysch of the Spanish city of San Sebastián. To carry out the research, the site of a bridge over the Urumea River was chosen, which was supported by pre-excavated reinforced concrete piles. 4 borings were carried out, by the rotation and washing method, with continuous sampling and combined with flexible dilatometer tests. In the field, an Osterberg load test (O-cell) was performed, while in the laboratory, determinations of natural moisture, natural unit weight, uniaxial compressive strength (UCS), point load strength (PLS), compressive wave propagation velocity (Vc) and also triaxial and direct shear tests were carried out. The research results indicate the following: a) the empirical functions that correlate the UCS with the PLS are not always linear; b) for the studied Flysch it is possible to obtain empirical functions that correlate the UCS with the PLS and with the Vc; c) the bearing capacity of the studied Flysch is much greater than if it is evaluated by different load capacity theories; d) it is possible to propose an empirical function that allows evaluating the mobilized shear strength (τm), as a function of the UCS and the displacement relative of the pile (δr).

Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghorbani, Ali;Alamoti, Mohsen Nasiri
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • The importance of using materials cost effectively to enhance the strength and reduce the cost, and weight of earth fill materials in geotechnical engineering led researchers to seek for modifying the soil properties by adding proper additives. Lightweight fill materials made of soil, binder, water, and Expanded polystyrene (EPS) beads are increasingly being used in geotechnical practices. This paper primarily investigates the behavior of sandy soil, modified by EPS particles. Besides, the mechanical properties of blending sand, EPS and the binder material such as fly ash and cement were examined in different mixing ratios using a number of various laboratory studies including the Modified Standard Proctor (MSP) test, the Unconfined Compressive Strength (UCS) test, the California Bearing Ratio (CBR) test and the Direct Shear test (DST). According to the results, an increase of 0.1% of EPS results in a reduction of the density of the mixture for 10%, as well as making the mixture more ductile rather than brittle. Moreover, the compressive strength, CBR value and shear strength parameters of the mixture decreases by an increase of the EPS beads, a trend on the contrary to the increase of cement and fly ash content.