• Title/Summary/Keyword: bearing steel

Search Result 1,011, Processing Time 0.022 seconds

Composite action of notched circular CFT stub columns under axial compression

  • Ding, Fa-xing;Wen, Bing;Liu, Xue-mei;Wang, Hai-bo
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • This paper conducted both numerical and theoretical studies to investigate the composite action of notched circular concrete-filled steel tubular (CFT) stub columns under axial compression and established a theoretical method to predict their ultimate bearing capacity. 3D finite element (FE) analysis was conducted to simulate the composite action and the results were in good agreement with experimental results on circular CFT stub columns with differently oriented notches in steel tubes. Parametric study was conducted to understand the effects of different parameters on the mechanical behavior of circular CFT stub columns and also the composite action between the steel tube and the core concrete. Based on the results, a theoretical formula was proposed to calculate the ultimate bearing capacity of notched CFT stub columns under compression with consideration of the composite action between the steel tube and the core concrete.

Bearing Strength of Steel Baseplate under Eccentric Loads (편심축력(偏心軸力)을 받는 철골구조(鐵骨構造) 주각부(柱脚部)의 지압강도(支壓强度))

  • Choi, Mun Sik;Min, Byung Yeol
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.683-691
    • /
    • 2003
  • Recently, the steel has been increaseingly used as an integrated part of high-rise buildings, which often composed of steel structures, steel reinforced concrete structures and composite structures. The steel base is designed to transfer the stresses induced from steel column to the reinforced concrete footing through the base plate. However, in the design of steel structures and steel reinforced concrete structure, it is generally difficult to evaluate the bearing strength of the steel base subjected to large axial force. Furthermore, the material used in steel base is quite different from those used in other connections and a load transferring mechanism of steel base is very complicated in nature. Therefore, a special attention must be placed in design and construction of steel base. In generally, the bearing strength test and research of the steel base subjected to concentrated load are carried out. But, in the design of the structures, uniaxial eccentric load is loaded to the steel base of the steel structures. In this research, the bearing strength and the me of failure considering eccentric loads and eccentric length, were experimented when eccentric load is loaded to the steel base of steel structures. Based on the test results, a basic design reference is suggested for a reasonable design of steel structures, steel reinforced concrete structures and composite structures.

Corrosion Resistance of Cr-Bearing Rebar to Macrocell Corrosion Environment Induced by Localized Carbonation

  • Tae, Sung-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.17-22
    • /
    • 2006
  • Artificial cracks were made in the cover concrete of specimens embedding ten types of steel rebars of different Cr contents. The research aims for developing Cr-bearing steel rebars resistant to macrocell corrosion environments induced by cracking in cover concrete. The cracks were subjected to intensive penetration of carbon dioxide (carbonation specimens) to form macrocells. The carbonation specimens were then treated with accelerated corrosion curing, during which current macrocell corrosion density was measured. The corrosion area and loss from corrosion were also measured at the end of 105 cycles of this accelerated curing. The results of the study showed that Cr-bearing steel with Cr content of 5% or more suppressed corrosion in a macrocell corrosion environment induced by the differences in the pH values due to carbonation of cracked parts. Cr-bearing steels with Cr content of 7% or more are proven to possess excellent corrosion resistance.

The ultimate bearing capacity of rectangular tunnel lining assembled by composite segments: An experimental investigation

  • Liu, Xian;Hu, Xinyu;Guan, Linxing;Sun, Wei
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.481-497
    • /
    • 2017
  • In this paper, full-scale loading tests were performed on a rectangular segmental tunnel lining, which was assembled by steel composite segments, to investigate its load-bearing structural behavior and failure mechanism. The tests were also used to confirm the composite effect by adding concrete inside to satisfy the required performance under severe loading conditions. The design of the tested rectangular segmental lining and the loading scheme are also described to better understand the bearing capacity of this composite lining structure. It is found that the structural ultimate bearing capacity is governed by the bond capacity between steel plates and the tunnel segment. The failure of the strengthened lining is the consequence of local failure of the bond at waist joints. This led to a fast decrease of the overall stiffness and eventually a loss of the structural integrity.

Frictional Characteristics of Water-lubricated Stainless Steel Ball Bearing (스테인레스강 볼베어링의 수윤활 마찰 특성)

  • 이재선;김종인;김지호;박홍윤;지성균
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.140-144
    • /
    • 2004
  • Water-lubrication ball bearings are required to install in aqueous medium where water is used as coolant or working fluid. However water-lubricated frictional characteristics of stainless steel ball bearing is not will known compared to oil-lubricated frictional characteristics. Furthermore study on friction at high temperature is rare because bearing maintenance strategy for water-lubricated or chemicals-lubricated bearings of equipment is mostly based on change of failed bearings and parts. Ball bearings and ball screws are used to transmit power in the control rod drive mechanism for an integral reactor and are lubricated with high temperature and high pressure chemically-controlled water. Bearings and power transmitting mechanical elements for a nuclear reactor require high reliability and high performance during estimated lifetime, and their performance should be verified. In this paper, experimental research results of frictional characteristics of water-lubricated ball bearing are reported.

Compressive performance of RAC filled GFRP tube-profile steel composite columns under axial loads

  • Ma, Hui;Bai, Hengyu;Zhao, Yanli;Liu, Yunhe;Zhang, Peng
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.335-349
    • /
    • 2019
  • To investigate the axial compressive performance of the recycled aggregate concrete (RAC) filled glass fiber reinforced polymer (GFRP) tube and profile steel composite columns, static loading tests were carried out on 18 specimens under axial loads in this study, including 7 RAC filled GFRP tube columns and 11 RAC filled GFRP tube-profile steel composite columns. The design parameters include recycled coarse aggregate (RCA) replacement percentage, profile steel ratio, slenderness ratio and RAC strength. The failure process, failure modes, axial stress-strain curves, strain development and axial bearing capacity of all specimens were mainly analyzed in detail. The experimental results show that the GFRP tube had strong restraint ability to RAC material and the profile steel could improve the axial compressive performance of the columns. The failure modes of the columns can be summarized as follow: the profile steel in the composite columns yielded first, then the internal RAC material was crushed, and finally the fiberglass of the external GFRP tube was seriously torn, resulting in the final failure of columns. The axial bearing capacity of the columns decreased with the increase of RCA replacement percentage and the maximum decreasing amplitude was 11.10%. In addition, the slenderness ratio had an adverse effect on the axial bearing capacity of the columns. However, the strength of the RAC material could effectively improve the axial bearing capacity of the columns, but their deformability decreased. In addition, the increasing profile steel ratio contributed to the axial compressive capacity of the composite columns. Based on the above analysis, a formula for calculating the bearing capacity of composite columns under axial compression load is proposed, and the adverse effects of slenderness ratio and RCA replacement percentage are considered.

Experimental Study on the Interface Bonding Characteristics of a Pin-bushing Bearing (핀부시 베어링 소재의 계면접합특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.315-319
    • /
    • 2008
  • This paper presents the interface bonding characteristics between a phosphor bronze and a steel plate for pin-bush bearings. The pin-bush bearing is an important component in which is used to reduce a friction loss and a wear against the piston pin. The pin-bush bearing is manufactured by hot-pressing a phosphor bronze and a back metal of a steel plate. This paper investigated the bonding interface characteristics in which is manufactured by melting a copper based bronze and a steel plate. The hardness from the inner surface of a bronze to the outer one of steel has been measured using a Vickers hardness tester. The experimental results show that the hardness of a bronze is superior to that of the conventional bronze and the transient hardness of pin-bush bearings is gradually increasing to the hardness of the steel back metal. This means that the bonding interface zone of pin-bush bearings may be fabricated by defusing a bronze to the steel plate due to a density difference between two materials.

Experimental study on hollow steel-reinforced concrete-filled GFRP tubular members under axial compression

  • Chen, B.L.;Wang, L.G.
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • Hollow steel-reinforced concrete-filled GFRP tubular member is a new kind of composite members. Firstly set the mold in the GFRP tube (non-bearing component), then set the longitudinal reinforcements with stirrups (steel reinforcement cage) between the GFRP tube and the mold, and filled the concrete between them. Through the axial compression test of the hollow steel-reinforced concrete-filled GFRP tubular member, the working mechanism and failure modes of composite members were obtained. Based on the experiment, when the load reached the ranges of $55-70%P_u$ ($P_u-ultimate$ load), white cracks appeared on the surface of the GFRP tubes of specimens. At that time, the confinement effects of the GFRP tubes on core concrete were obvious. Keep loading, the ranges of white cracks were expanding, and the confinement effects increased proportionally. In addition, the damages of specimens, which were accompanied with great noise, were marked by fiber breaking and resin cracking on the surface of GFRP tubes, also accompanied with concrete crushing. The bearing capacity of the axially compressed components increased with the increase of reinforcement ratio, and decreased with the increase of hollow ratio. When the reinforcement ratio was increased from 0 to 4.30%, the bearing capacity was increased by about 23%. When the diameter of hollow part was decreased from 55mm to 0, the bearing capacity was increased by about 32%.

PC말뚝 이음시공용 강관이음부의 적정규격 결정에 관한 연구

  • 임종석;한찬균
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.03a
    • /
    • pp.103-114
    • /
    • 1992
  • The jointing method of PC pile installation, which utilizes steel sleeve, is most popular for the deep bearing stratum( deeper than 15m ) or the irregular bearing stratum depths. However, this method has some difficulties in safety because there is no optimum standards of steel sleeve. This research attempts to determine the optimum standard of steel sleeve for 350mm PC pile, which is most widely used, through bending moment test designated by KS and numerical analysis using finite element method. According to the results, the optimum length of steel sleeve is three times longer than diameter of pile, and the thickness of steel sleeve is more than 2.5mm.

  • PDF

High Cyclic Fatigue Life and Fracture Behaviors of Shot-Peened Bearing Steel (쇼트피닝 처리를 한 베어링강의 고사이클 피로수명 및 파괴거동)

  • Yoon, Sang-Jae;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1119-1129
    • /
    • 2011
  • Shot-peening effects on the fatigue behavior of bearing steel were investigated under the high cyclic loading. Hourglass shape specimens were made of bearing steel(JIS-SUJ2) for rotary bending fatigue tests. Two kinds of treatments were performed : a heat treatment and a shot-peened surface treatment after the heat treatment. The fracture surfaces of specimens were classified into two types of fracture mode : the surface fracture mode induced by a surface defect and the internal fracture mode induced by a nonmetallic inclusion. Inclusion depth and shape affected considerably the fatigue life. Shot-peening treatment improved much the fatigue life of the bearing steel under low and high levels of cyclic loads. Probabilistic-stress-life (P-S-N) curves were suggested for the reliable fatigue life estimation of the improved bearing steel.