• Title/Summary/Keyword: bearing minimum film thickness

Search Result 74, Processing Time 0.021 seconds

The Effect of Balance Weight on the Lubrication and Friction Characteristics of Crankshaft System (크랭크샤프트계의 윤활 및 마찰 특성에 미치는 밸런스 웨이트의 영향)

  • Jo, Myeong-Rae;O, Dae-Yun;Han, Dong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1585-1590
    • /
    • 2002
  • This paper reports on the balance weight effect on the lubrication and friction characteristics of crankshaft system. To determine the main bearing loads, the crankshaft was treated as statically determinate system. Four and eight-balance weight crankshafts were considered, and minimum oil film thickness and friction loss were calculated. The main bearing loads were increased in the four-balance shaft due to the increasing of unbalanced rotating mass at No. 1 and 3 main bearing sides. The minimum oil film thickness of four-balance shaft became thinner than eight-balance, and friction loss was increased.

Analytical Study on the Optimized Design of Engine Bearings for a Passenger Car (자동차용 엔진베어링의 최적설계에 관한 해석적 연구)

  • Kim, Chung-Kyun;Kim, Han-Goo
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, the minimum oil film thickness and the maximum oil film pressure of engine bearings have been analyzed by using the elastohydrodynamic theory and Taguchi's design method as functions of the oil groove width, oil hole diameter, oil hole position, and oil supply pressure. The optimized design of the engine bearing f3r an automotive Diesel engine is very important for supporting a load-carrying capacity due to gas pres-sures from the engine combustion chamber and inertia forces of the piston. The optimized design data of engine bearings indicated that the optimized oil groove width and an oil diameter of a engine bearing are 8mm at the speed of 2,000 rpm for a given 4-cylinder Diesel engine. Thus, the oil groove oil groove and an oil hole for high performances of an engine bearing may be considered as major design parameters compared to other design factors, which are strongly related to the minimum oil film thickness and the maximum oil pressure distribution of the engine oil.

A Study on the Minimum Oil Film Thickness of Connecting-rod Bearing in Engine (엔진 연결봉 베어링의 최소 유막 두께에 관한 연구)

  • Choi, Jae-Kwon;Heo, Gon;Han, Dong-Chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.04a
    • /
    • pp.39-53
    • /
    • 1993
  • The minimum oil film thickness(MOFT) in the connecting-rod bering of a 1.5 liter, L-4, gasoline engine is measured up to 5500 rpm and calculated to study the dynamically loaded engine bearing. Short bearing approximation and Mobility method are used for theoretical analysis of oil film charactrtistics. And cylinder pressure, crank-pin surface temperature and bearing tenp ture are measured as the input data of theoretical analysis. The MOFT are measured by the total capacitance method(TCM). To improve the reliability of the test results, a reasonable detmuuination method of bearing clearance is introduced and used, and the effects of cavitation and aeration on the test results are neglected. The crankshaft is grounded by means of a slip ring. A scissor type linkage system was developed to measure the MOFT and bearing temperature. The effects of engine speed, load and oil viscosity on the measured and calculated minimum oil film thicknesses are investigated at 1500 to 5500 rpm. From the comparison between the measured and calculated MOFT, it is found that a qualitative similarity exists between them, but in all cases, the measured MOFT are smaller than those calculated.

  • PDF

Analysis of Crank Pin Bearing with Various Inlet Groove Shape for Marine Engine (급유구의 형상에 따른 박용엔진 크랭크 핀 베어링의 윤활특성 해석)

  • 하양협;이득우;김정훈;이성우
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.87-93
    • /
    • 1998
  • Crank pin bearing in two-stroke marine diesel engine is operated under quite severe conditions since the elements are big and heavy and the sliding speed is very slow. Therefore it is very difficult to form oil film. In this paper, two types of bearings with different groove shape are compared. One has circumferential oil groove at lower position and the other has lengthwise oil groove at upper position. Bearing clearance, oil inlet pressure and length to diameter ratio are selected as design parameters. Locus of journal center and minimum oil film thickness are investigated to compare two cases.

Experimental Study on the Characteristics of the Film Pressure and Temperature in a 5-Pad Tilting Pad Journal Bearing of LOP Type (LOP형 5패드 틸팅패드 저어널베어링의 압력 및 온도 특성에 관한 실험적 연구)

  • 하현천;양승헌;변형현
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.7-13
    • /
    • 1998
  • The static characteristics of a five-pad tilting pad journal bearing of load on pad (LOP) type have been investigated experimentally under the different values of bearing load and shaft speed. The diameter and length of the bearing are 300.91 mrn and 149.8 mm, reslx;ctively. Circumferential distribution of the film pressure, film thickness, journal surface temperature and beating surface temperature are measured. A noticeable inlet pressure rise is observed at the entrance of each pad, especially the bottom pad. The inlet pressure is increased by the increase of shaft speed as well as bearing load. In the five-pad tilting pad joumal bearing of LOP type, almost all of beating load is being carried only by the bottom pad. The maximum bearing surface temperature is observed at near the minimum film thickness. It is observed that the metal temperature of the mid-plane is higher than that of the edge at the inlet region, while the metal temperature of the edge is higher than that of the mid-plane at the outlet region.

Study on transient performance of tilting-pad thrust bearings in nuclear pump considering fluid-structure interaction

  • Qiang Li;Bin Li;Xiuwei Li;Quntao Xie;Qinglei Liu;Weiwei Xu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2325-2334
    • /
    • 2023
  • To study the lubrication performance of tilting-pad thrust bearing (TPTBs) during start-up in nuclear pump, a hydrodynamic lubrication model of TPTBs was established based on the computational fluid dynamics (CFD) method and the fluid-structure interaction (FSI) technique. Further, a mesh motion algorithm for the transient calculation of thrust bearings was developed based on the user defined function (UDF). The result demonstrated that minimum film thickness increases first and then decreases with the rotational speed under start-up condition. The influence of pad tilt on minimum film thickness is greater than that of collar movement at low speed, and the establishment of dynamic pressure mainly depends on pad tilt and minimum film thickness increases. As the increase of rotational speed, the influence of pad tilt was abated, where the influence of the moving of the collar dominated gradually, and minimum film thickness decreases. For TPTBs, the circumferential angle of the pad is always greater than the radial angle. When the rotational speed is constant, the change rate of radial angle is greater than that of circumferential angle with the increase of loading forces. This study can provide reference for improving bearing wear resistance.

Analysis on the Friction Characteristics of Low Viscosity Engine Oils (저점도 엔진오일이 마찰특성에 미치는 영향에 관한 해석적 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.249-255
    • /
    • 2005
  • In this paper, the friction characteristic of engine bearings has been analyzed in terms of a friction loss power, a minimum film thickness and an oil film pressure. This analysis has been focused on the fuel economy improvement with a low viscosity engine oil such as SAE 0W-40, which is used for a friction loss reduction and increased for a Diesel fuel economy. The friction loss power, the minimum oil film thickness and oil film pressure distribution for plain bearings of a Diesel engine are analyzed using an AVL's EXCITE program with a conventional engine oils of SAE 5W-40 and 10W-40, and a low viscosity engine oil of SAE 0W-40. The computed results indicate that a viscosity of engine oils is closely related to the friction loss power and the decreased minimum film thickness in which is a key parameter of a load carrying capacity of an oil film pressure distribution. When the low viscosity engine oil is supplied to engine bearings, it does not affect to the formation of a minimum oil film thickness. But the friction loss power has been significantly affected by low viscosity engine oil at a low operating temperature of 0. Based on the FEM computed results, the low viscosity engine oil at a low temperature range will be an important factor for an improvement of the fuel economy improvement.

An Experimental Study on the Rolling Resistance of Bearing Surfaces Covered by Pure Silver Film (은 박막이 코팅된 베어링 표면의 구름 저항 거동 고찰)

  • 양승호;공호성;윤의성;권오관
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.101-110
    • /
    • 1997
  • An experimental study was performed to discover the tribological behaviors of pure silver coated 52100 bearing steel. Pure silver coatings ranging from 80 nm to several micrometers were produced by a thermal evaporation coating method. Experiments using a thrust ball bearing-typed rolling test-rig were performed for the investigations of the influence of coating thickness on the tribological rolling behavior. The existence of optimum film thickness which revealed minimum rolling resistance was discovered. A careful analysis on the contact surfaces for the optimum film thickness has been performed. The contact patches produced by the transferred silver films played an important role for the rolling resistance to keep low.

  • PDF

An Experimental Study on the Rolling Resistance of Bearing Surfaces Covered by Pure Silver Film (은 박막이 코팅된 베어링 표면의 구름 저항 거동 고찰)

  • 양승호;공호성;윤의성;권오관
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.85-92
    • /
    • 1997
  • An experimental study was performed to discover the tribological behaviors of pure silver coated 52100 bearing steel. Pure silver coatings ranging from 80 nm to several micrometers were produced by a thermal evaporation coating method. Experiments using a thrust ball bearing-typed rolling test-rig were performed for the investigations of the influence of coating thickness on the tribological rolling behavior. The existence of optimum film thickness which revealed minimum rolling resistance was discovered. A careful analysis on the contact surfaces for the optimum film thickness has been performed. The contact patches produced by the transferred silver films played an important role for the rolling resistance to keep low.

A Study on the Oil Film Behaviors of Pin Bush Bearings for Diesel Engines with Various Engine Oil Viscosities (오일점도에 따른 디젤엔진용 핀부시 베어링의 유막거동에 관한 연구)

  • Kim, Chung-Kyun;Lee, Byoung-Kwan
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • A pin bush bearing is one of the most important element in the piston engine which is joined a piston to a connecting rod. A pin bush is suffered by heat and changeable repeat loads, which are come from the explosive gas heat and pressures during a reciprocating stroke. Therefore, a tribological behavior of pin bush bearings is very severe compared to other parts of a piston assembly. To keep a stable operation of pin bush bearings effectively, it would be satisfied with proper oil film strength for severe operating conditions and durability, which are strongly related to the oil film thickness, oil film pressure, and a friction loss power. The computed results show that the viscosity of engine oils slightly affects to the minimum oil film thickness and oil film pressure distribution, but is an influential parameter on a total friction loss power. Thus the low viscosity engine oils for an increased operation condition should select a high level of base oil and add a viscosity index improver as an oil film additive.