• 제목/요약/키워드: bearing layer

검색결과 343건 처리시간 0.026초

Numerical formulation of a new solid-layer finite element to simulate reinforced concrete structures strengthened by over-coating

  • Suarez-Suarez, Arturo;Dominguez-Ramírez, Norberto;Susarrey-Huerta, Orlando
    • Coupled systems mechanics
    • /
    • 제11권5호
    • /
    • pp.439-458
    • /
    • 2022
  • Over-coating is one of the most popular engineering practices to strengthen Reinforced Concrete (RC) structures, due to the relative quickness and ease of construction. It consists of an external coat bonded to the outer surface of the structural RC element, either by the use of chemical adhesives, mechanical anchor bolts or simply mortar injection. In contrast to these constructive advantages, the numerical estimation of the bearing capacity of the strengthened reinforced concrete element is still complicated, not only for the complexity of modelling a flexible membrane or plate attached to a quasi-rigid solid, but also for the difficulties that raise of simulating any potential delamination between both materials. For these reasons, the standard engineering calculations used in the practice remain very approximated and clumsy. In this work, we propose the formulation of a new 2D solid-layer finite element capable to link a solid body with a flexible thin layer, as it were the "skin" of the body, allowing the potential delamination between both materials. In numerical terms, this "skin" element is intended to work as a transitional region between a solid body (modelled with a classical formulation of a standard quadrilateral four-nodes element) and a flexible coat layer (modelled with cubic beam element), dealing with the incompatibility of Degrees-Of-Freedom between them (two DOF for the solid and three DOF for the beam). The aim of the solid-layer element is to simplify the mesh construction of the strengthened RC element being aware of two aspects: a) to prevent the inappropriate use of very small solid elements to simulate the coat; b) to improve the numerical estimation of the real bearing capacity of the strengthened element when the coat is attached or detached from the solid body.

Numerical formulation solid-layer finite element to simulate reinforced concrete structures strengthened by over-coating

  • Arturo Suarez-Suarez;Norberto Dominguez-Ramirez;Orlando Susarrey-Huerta
    • Coupled systems mechanics
    • /
    • 제12권6호
    • /
    • pp.481-501
    • /
    • 2023
  • Over-coating is one of the most popular engineering practices to strengthen Reinforced Concrete (RC) structures, due to the relative quickness and ease of construction. It consists of an external coat bonded to the outer surface of the structural RC element, either by the use of chemical adhesives, mechanical anchor bolts or simply mortar injection. In contrast to these constructive advantages, the numerical estimation of the bearing capacity of the strengthened reinforced concrete element is still complicated, not only for the complexity of modelling a flexible membrane or plate attached to a quasi-rigid solid, but also for the difficulties that raise of simulating any potential delamination between both materials. For these reasons, the standard engineering calculations used in the practice remain very approximated and clumsy. In this work, we propose the formulation of a new 2D solid-layer finite element capable to link a solid body with a flexible thin layer, as it were the "skin" of the body, allowing the potential delamination between both materials. In numerical terms, this "skin" element is intended to work as a transitional region between a solid body (modelled with a classical formulation of a standard quadrilateral four-nodes element) and a flexible coat layer (modelled with cubic beam element), dealing with the incompatibility of Degrees-OfFreedom between them (two DOF for the solid and three DOF for the beam). The aim of the solid-layer element is to simplify the mesh construction of the strengthened RC element being aware of two aspects: a) to prevent the inappropriate use of very small solid elements to simulate the coat; b) to improve the numerical estimation of the real bearing capacity of the strengthened element when the coat is attached or detached from the solid body.

폐타이어의 철도진동 저감효과에 대한 실험적 연구 (Reduction Effect of Railroad Vibration by Utilizing Waste Tires)

  • 김진만;이광우;조삼덕;오세용
    • 한국환경복원기술학회지
    • /
    • 제9권1호
    • /
    • pp.31-40
    • /
    • 2006
  • This paper describes the results of a series of field experiments which are carried out to assess the reduction effect of railroad vibration by utilizing waste tires. The ground vibration due to train service is measured in Honam Railroad line and Kyongbu Railroad line to assess the ground vibration with the domestic railroad line and train type before field model test. From the results of these tests, frequency on train service is presented from 5Hz to 100Hz and a range of excellence frequency is presented to be about from 20Hz to 40Hz in the domestic railroad line. Also, plate bearing tests are conducted to evaluate the variation of bearing capacity with different thickness of the waste tire layer and the fill layer. Finally, field model test is performed by using tire chips ($5cm{\times}5cm$ in size) as a reduction material of railroad vibration. The reduction effect of railroad vibration by utilizing waste tires increases with increasing the thickness of the waste tire layer and the frequency of the vibration source. The results of this experimental study was shown that the waste tire can be used for reduction of the railroad vibration.

연약지반상 고속철도 노반 축조시 지오셀 시스템의 효과 (Reinforcing Effect of Geocell on Soft Soil Subgrade for High-speed Railroad)

  • 조삼덕;윤수호;김진만;정문경;김영윤
    • 한국지반공학회논문집
    • /
    • 제18권2호
    • /
    • pp.5-12
    • /
    • 2002
  • 본 연구에서는 연약지반 상에 축조되는 고속철도 노반을 보강하기 위해 사용된 지오셀의 효과를 평가하기 위해 다양한 현장 평판재하시험과 동적 모형토조시험을 수행하였다. 실험결과로부터 지오셀 사용에 의한 보강노반의 두께 감소효과와 노상 지지력 증가효과가 평가되었다. 지오셀 1층과 복토 loom를 사용하면 동일한 두에의 쇄석층을 사용할 경우와 비교하여 3~4배의 지지력 개선효과가 있으며, 노반두께를 약 35cm 정도 감소시킬 수 있는 것으로 평가되었다.

Improvement in engineering properties of subgrade soil due to stabilization and its effect on pavement response

  • Nagrale, Prashant P.;Patil, Atulya P.
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.257-267
    • /
    • 2017
  • This paper presents laboratory investigation of stabilization of subgrade soil. One type of soil and three types of stabilizers i.e., hydrated lime, class F fly ash and polypropylene fibres are selected in the study. Atterberg limit, compaction, california bearing ratio (CBR), unconfined compressive strength and triaxial shear strength tests are conducted on unstabilized and stabilized soil for varying percentage of stabilizers to analyze the effect of stabilizers on the properties of soil. Vertical compressive strains at the top of unstabilized and stabilized subgrade soil were found out by elasto-plastic finite element analysis using commercial software ANSYS. Strategy for design of optimum pavement section was based on extension in service life (TBR) and reduction in layer thickness (LTR). Extension in service life of stabilized subgrade soil is 6.49, 4.37 and 3.26 times more due to lime, fly ash and fibre stabilization respectively. For a given service life of the pavement, there is considerable reduction in layer thicknesses due to stabilization. It helps in reduction in construction cost of pavement and saving in natural resources as well.

Mechanical behavior test and analysis of HEH sandwich external wall panel

  • Wu, Xiangguo;Zhang, Xuesen;Tao, Xiaokun;Yang, Ming;Yu, Qun;Qiu, Faqiang
    • Advances in concrete construction
    • /
    • 제13권 2호
    • /
    • pp.153-162
    • /
    • 2022
  • Prefabricated exterior wall panel is the main non-load-bearing component of assembly building, which affects the comprehensive performance of thermal insulation and durability of the building. It is of great significance to develop new prefabricated exterior wall panel with durable and lightweight characteristics for the development of energy-saving and assembly building. In the prefabricated sandwich insulation hanging wall panel, the selection of material for the outer layer and the arrangement of the connector of the inner and outer wall layers affect the mechanical performance and durability of the wall panels. In this paper, high performance cement-based composites (HPFRC) are used in the outer layer of the new type wall panel. FRP bars are used as the interface connector. Through experiments and analysis, the influence of the arrangement of connectors on the mechanical behaviors of thin-walled composite wall panel and the panel with window openings under two working conditions are investigated. The failure modes and the role of connectors of thin-walled composite wallboard are analyzed. The influence of the thickness of the wall layer and their combination on the strain growth of the control section, the initial crack resistance, the ultimate bearing capacity and the deformation of the wall panels are analyzed. The research work provides a technical reference for the engineering design of the light-weight thin-walled and durable composite sandwich wall panel.

Experimental study on shear, tensile, and compression behaviors of composite insulated concrete sandwich wall

  • Zhang, Xiaomeng;Zhang, Xueyong;Liu, Wenting;Li, Zheng;Zhang, Xiaowei;Zhou, Yilun
    • Advances in concrete construction
    • /
    • 제11권1호
    • /
    • pp.33-43
    • /
    • 2021
  • A new type of composite insulated concrete sandwich wall (ICS-wall), which is composed of a triangle truss steel wire network, an insulating layer, and internal and external concrete layers, is proposed. To study the mechanical properties of this new ICS-wall, tensile, compression, and shearing tests were performed on 22 specimens and tensile strength and corrosion resistance tests on 6 triangle truss joints. The variables in these tests mainly include the insulating plate material, the thickness of the insulating plate, the vertical distance of the triangle truss framework, the triangle truss layout, and the connecting mode between the triangle truss and wall and the material of the triangle truss. Moreover, the failure mode, mechanical properties, and bearing capacity of the wall under tensile, shearing, and compression conditions were analyzed. Research results demonstrate that the concrete and insulating layer of the ICS-wall are pulling out, which is the main failure mode under tensile conditions. The ICS-wall, which uses a graphite polystyrene plate as the insulating layer, shows better tensile properties than the wall with an ordinary polystyrene plate. The tensile strength and bearing capacity of the wall can be improved effectively by strengthening the triangle truss connection and shortening the vertical distances of the triangle truss. The compression capacity of the wall is mainly determined by the compression capacity of concrete, and the bonding strength between the wall and the insulating plate is the main influencing factor of the shearing capacity of the wall. According to the tensile strength and corrosion resistance tests of Austenitic stainless steel, the bearing capacity of the triangle truss does not decrease after corrosion, indicating good corrosion resistance.

중간기초개념으로서 짧은 쇄석다짐말뚝의 지지력 특성에 관한 연구 (A Study on the Bearing Capacity of Rammed Aggregate Pier as the Intermediate Foundations)

  • 천병식;김경민;김준호
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.247-252
    • /
    • 2004
  • To secure stability and availability of Rammed Aggregate Pier method as the foundation of a structure, the bearing capacity and failure behavior characteristics was studied through soil laboratory tests in a model ground. In this study, soil laboratory tests use carried out to find the applicability of RAP method as the foundation of a structure. And bearing capacity and the failure mechanism of RAP method was studied according to relative density($60\%,\;70\%,\;90\%$), diameter(45mm, 60mm, 70mm) of each pier ana depth(5cm, l0cm, 15cm, 20cm, 25cm, 30cm). Earth pressure cell is set up approach RAP and 1.0D space at RAP center. Bearing acpacity and the failure mechanism of RAP is investigated by load test As a result, bulging failure was happened in $5\~10cm\;(1.0D\~2.00)$ depth which the maximum lateral earth pressure is acting. Especially, diameter changing of RAP are in inverse proportion to the relative density and the lateral stress is very much influenced by the lateral earth pressure in every layer and tends to decrease according to depth.

  • PDF

Comparative study on bearing characteristics of pervious concrete piles in silt and clay foundations

  • Cai, Jun;Du, Guangyin;Xia, Han;Sun, Changshen
    • Geomechanics and Engineering
    • /
    • 제27권6호
    • /
    • pp.595-604
    • /
    • 2021
  • With the advantages of high permeability and strength, pervious concrete piles can be suitable for ground improvement with high water content and low bearing capacity. By comparing the strength and permeability of pervious concrete with different aggregate sizes (3-5 mm and 4-6 mm) and porosities (20%, 25%, 30% and 35%), the recommended aggregate size (3-5 mm) and porosity (30%) can be achieved. The model tests of the pervious concrete piles in soft soil (silt and clay) foundations were conducted to evaluate the bearing characteristics, results show that, for the higher consolidation efficiency of the silty foundation, the bearing capacity of the silty foundation is 16% higher, and the pile-soil stress ratio is smaller. But when it is the ultimate load for the piles, they will penetrate into the underlying layer, which reduces the pile-soil stress ratios. With higher skin friction of the pile in the silty foundation, the pile penetration is smaller, so the decrease of the pile axial force can be less. For the difference in consolidation efficiency, the skin friction of pile in silt is more affected by the effective stress of soil, while the skin friction of pile in clay is more affected by the lateral stress. When the load reaches 4400 N, the skin friction of the pile in the silty foundation is about 35% higher than that of the clay foundation.

하드디스크 드라이브에서 슬라이더의 DLC 층 손상에 의한 진동 특성 변화에 관한 연구 (Analysis for flying stability with damaged DLC layer by confined optical energy in TAMR system)

  • 박노철;최종학;임건엽;박경수;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.984-985
    • /
    • 2014
  • This research investigates to analyze the effect of laser of thermally assisted magnetic recording system on diamond like carbon (DLC) layer of slider. We investigated a damaged DLC layer of slider with laser spot-induced damage and analyze the effect of the damaged DLC layer in slider dynamics. The damaged DLC layer resulted in change of flying height and air bearing stiffness pressure.

  • PDF