• Title/Summary/Keyword: bearing geometry

Search Result 140, Processing Time 0.025 seconds

Analysis and Control of a 3-Phase VR Type Self-Bearing Step Motor for Small Angle Control Considered the fringing Effect (프린징효과를 고려한 미세각도 제어용 3상 가변형 셀프베어링 스텝모터의 해석 및 제어)

  • Kim, Daegon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.93-100
    • /
    • 2001
  • The analysis and control of a new type unsymmetrical slotted self-bearing step motor for small angle control is presented. The motor actuator is used for both motor and bearing functionality without any additional coil windings or electromagnets for bearing functionality. A circular-arc, straight-line permeance model for the fringing effect is presented. An unsymmetrical slotted self-bearing step motor layout and control algorithm are described. A new control current generation method using the electromagnets layout geometry, which needs no additional current for bearing functionality, is proposed. As the result of this analysis the fringing effect largely influences on the system characteristics. especially in torque. Even if the bearing functionality is added into the motor functionality, it is shown that the magnitude of torque is not changed.

  • PDF

A Study on Air-Lubricated Spherical Tilting Pad Bearings (공기윤활 구면틸팅패드베어링에 대한 연구)

  • 김성국;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.160-165
    • /
    • 1998
  • A theoretical analysis has been undertaken to show the influence of bearing geometry on the steady state characteristics of air lubricated spherical tilting pad bearings. The geometry variations considered are the number of pads, the eccentricity ratio, the direction of load, and the preloading.

  • PDF

Development of the Automated Calculation System for Air-Bearing Spindle (공기 베어링 주축의 자동설계시스템 개발)

  • Chernopyatov Y.A.;Chung W.J.;Dolotov K.S.;Kim D.S.;Lee C.M.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.38-48
    • /
    • 2004
  • Recently the use of high-speed equipment in machine-tool industry has greatly increased, which requires the development of prognostics and prediction methods on the design stage. Conversion of the test/experiments stage from real to virtual reality will not only significantly reduce the design and manufacturing cost, but will also increase design quality. This paper shows how it is possible to develop the automated system for the design calculations of the air-bearing spindles. First, the general calculation method is introduced. It contains several steps, namely, geometry identification, pressure calculation, stiffiness calculation, dynamics characteristics calculation. For geometry identification reducing spindle shaft to rings was proposed, which helps to automate the calculation process. For pressure calculation the Peshti method was implemented. For stiffiness calculation the analysis was made, which shown the necessity of correct calculation step selection. Then the system of ordinary differential equations containing influence coefficients was evolved, which is used for trjectories calculation. The graphical representation of the calculation results shows the dynamic behavior of the spindle unit concerning various working conditions. Finally, this automated system is illustrated by an example of the air-bearing spindle calculation.

Sensitivity Analysis of Geometric Parameters on the Life of an Automotive Wheel Bearing Unit

  • Ahn, T.K.;Lee, S.H.;Yoon, H.W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.413-414
    • /
    • 2002
  • An automotive wheel bearing is one of the most important components to guarantee the service life of a passenger car. The endurance life of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions temperature loading conditions, bearing geometry, internal clearance and so on. In this paper, we calculate the endurance life of wheel bearing units and analyze the sensitivity of bearing geometric parameters on the life by using Taguchi method.

  • PDF

A Selection of Initial Contact Angle of Automotive Wheel Bearing Units (차륜용 베어링 유니트의 초기 접촉각 선정)

  • 안태길;이상훈;현준수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.162-167
    • /
    • 2002
  • An automotive wheel bearing is one of the most important components to guarantee the service life of a passenger car. The endurance life of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions, temperature, loading conditions, bearing geometry, internal clearance and so on. In this paper, we analyze the relation between loads and deformations of wheel bearing units. On the basis of it, we calculate the endurance life of wheel bearing units and suggest a method to determine the initial contact angle to achieve a maximum endurance life with considering stress concentration.

Effects of Geometric Parameters on the Life of an Automotive Wheel Bearing Unit (차륜용 베어링 유니트의 수명에 대한 설계변수 기여도 해석)

  • 안태길;이상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.670-673
    • /
    • 2002
  • Automotive wheel bearings are one of the most important components to guarantee the service life of a passenger car. The endurance life of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions, temperature, loading conditions, bearing geometry, internal clearance and so on. In this paper, we analyze the relation between loads and deformations of wheel bearing units. On the basis of it we calculate the endurance life of wheel bearing units and analyze the contribution of bearing geometric parameters on the endurance life by using Taguchi method.

  • PDF

An Analysis of Dynamic Characteristics of Air-Lubricated Slider Bearing by Using Perturbation Method (섭동법을 이용한 공기윤활 슬라이더 베어링의 동특성 해석)

  • Gang, Tae-Sik;Choe, Dong-Hun;Jeong, Tae-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1520-1528
    • /
    • 2000
  • This study presents a method for determining bearing stiffness and damping coefficients of air-lubricated slider bearing, and shows influences of air-bearing surface geometry(recess depth, crown an d pivot location) on flying attitude and dynamic characteristics. To derive the dynamic lubrication equation, the perturbation method is applied to the generalized lubrication equation which based on linearized Boltzmann equation. The generalized lubrication equation and the dynamic lubrication equation are converted to a control volume formulation, and then, the static and dynamic pressure distributions are calculated by finite difference method. The recess depth and crown of the slider show significantly influence on flying attitude and dynamic characteristics comparing with those of pivot location.

Design of Shoulder Height for Ball Bearing using Contact Analysis (접촉해석을 이용한 볼 베어링의 Shoulder Height 설계)

  • Kim, Tae-Wan;Yoon, Ki-Chan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.228-233
    • /
    • 2008
  • In this study, the methodology for determination of shoulder height in the internal shape design of ball bearing using 3D contact analysis is proposed. The static analysis of a ball bearing was performed to calculate the distribution of applied contact load and angles among the rolling elements. From each rolling element loads and the contact geometry between ball and inner/outer raceway, 3D contact analyses using influence function are conducted. These methodology is applied to HDD ball bearing. A critical axial load and a critical shoulder height which are not affected by edge are calculated. The proposed methodology may be applied to other rolling element bearing for the purpose of reducing the material cost and improving the efficiency of the bearing design process.

Analysis of Herringbone Grooved Journal Bearing Using Generalized Coordinate Transformation (일반좌표계 변환을 이용한 헤링본 그루브 베어링의 해석)

  • 박상신;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.317-324
    • /
    • 1999
  • The present work is an attempt to calculate the steady state pressure and perturbed pressure of herringbone grooved journal bearings. A generalized coordinate system is introduced to handle the complex bearing geometry. The coordinates are fitted to the groove boundary and the Reynold's equation is transformed to be fitted to this coordinates system using the Gauss divergence theorem. This method makes it possible to deal with an arbitrary configuration of a lubricated surface. The characteristics of finite herringbone grooved journal are well calculated using this method.

  • PDF

Analysis of Contact Stress in Slewing Ring Bearings (슬루잉 링 베어링의 접촉응력분포에 관한 연구)

  • 김청균;이승렬
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.24-33
    • /
    • 1995
  • This paper presents the contact stress distributions between the multi-contact bodies and the total reaction forces for various types of contact geometry for multi-load slewing ring bearings. The FEM results indicate that the slope of the roller type of slewing ring bearing has slightly steeper than that of the ball type. This is because the roller type wire race bearings is stiffer than the ball type bearing. The total reaction force of ball type slewing bearing shows much higher than that of wire race slewing bearings.