• Title/Summary/Keyword: bearing damage

Search Result 399, Processing Time 0.021 seconds

A Study on the Identification Method of Lubrication Characteristics for Journal Bearing (저널베어링의 윤활상태 판별 기법에 관한 연구)

  • Kim, Myung-Hwan;Lee, Sang-Don;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.56-60
    • /
    • 2009
  • A journal bearing is used in a hydrodynamic lubrication state, but it becomes a boundary lubrication state that asperity of a contact part touch each other when pressure is too high and an enough oil film is not formed by viscosity change due to lubricating oil temperature. At this time, abrasion due to contact between a journal and a bearing is unavoidable, and scuffing damage that the journal adheres to the bearing occurs if the process is repeated. Damage of the journal bearing is an important problem because it gives huge damage to a machine and can generate large accidents such as economic loss and human life damage. In this study, method for using the pull-up resistor concept was introduced as the monitoring technology. This monitoring system is important to enhance reliability of the engine.

Structural Analysis on Tension Bearing of Automotive Engine (자동차 엔진 텐션베어링에 대한 구조해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.21-28
    • /
    • 2012
  • This study analyzes about automotive engine tension bearing through the structural analyses of fatigue and vibration. Maximum equivalent stress is shown at the lower of tensioner. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^{6}MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design of tension bearing by investigating prevention and durability against its damage.

상부패드의 형상변경을 통한 증기터빈용 Anti-spragging 틸팅패드 저널베어링 개발(2-1)

  • Na, Un-Hak
    • 열병합발전
    • /
    • s.50
    • /
    • pp.18-22
    • /
    • 2006
  • The tilting pad journal bearing has widely used to support high pressure/high rotating turbine rotors owing to their inherent dynamic stability characteristics. However, fatigue damages in the upper unlcaded pads and the break of locking pins etc. by pad spragging were continuously taken place in the actual steam turbines. The purpose of this paper is to develope a new bearing model that can prevent bearing damage problem effectively by pad spragging in a tilting pad journal bearing. A new bearing model which has a wedged groove is suggested from the studies of spragging mechanism performed by previously research works. The spragging characteristics of the upper unloaded pad are studied experimentally in order to verify the reliability of a new bearing model. It can be known that the phenomenon of pad spragging nearly does not occur in the new bearing model under the various experimental conditions. And it is observed that any kinds of bearing failures by pad spragging does not detect in the application of actual steam turbines.

  • PDF

Experimental Study on Damage to Journal Bearing due to Contaminating Particles in Lubricant (윤활유 오염입자에 의한 저널 베어링 손상에 관한 실험적 연구)

  • Song, Chang Seok;Lee, Bora;Yu, YongHun;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.69-77
    • /
    • 2015
  • Recently, there have been reports of severe symptoms of wear in bearings due to foreign substances mixed in lubricants. Therefore, studying the effects of foreign substances (such as combustion products and metallic debris) on the wear characteristics of journal bearings and proposing appropriate management standards for lubricant cleanliness have become necessary. Studies on the effect of particle size and concentration of foreign substances on surface damage have actively progressed in the recent times. These studies indicate the possibility of foreign substances causing direct wear of bearing surfaces. However, experiments conducted until now involve only basic tests such as the Pin-on-Disk test instead of those involving real bearing systems. This study experimentally examines the damage to the surface of a journal bearing due to foreign substances (combustion products and alumina) mixed with the lubricant, as well as the effect of the type and size of particles on its wear characteristics. The study uses an experimental journal bearing similar to a real bearing system for conducting the lubrication test. Hydrodynamic Lubrication (HL) numerical analysis, experiment results, and film parameters are used for calculating the operating conditions required for achieving the desired film thickness, and the results of the analysis are modified for considering the surface roughness. The run-time of the experiment is 10 min including the stabilization process. The experiment results show that alumina particles larger than the minimum film thickness cause significant surface damage.

Infrared Thermography Quantitative Diagnosis in Vibration Mode of Rotational Mechanics

  • Seo, Jin-Ju;Choi, Nam-Ryoung;Kim, Won-Tae;Hong, Dong-Pyo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.291-295
    • /
    • 2012
  • In the industrial field, real-time monitoring system like a fault early detection is very important. For this, the infrared thermography technique as a new diagnosis method is proposed. This study is focused on the damage detection and temperature characteristic analysis of ball bearing using the non-destructive infrared thermography method. In this paper, thermal image and temperature data were measured by a Cedip Silver 450 M infrared camera. Based on the results, the temperature characteristics under the conditions of normal, loss lubrication, damage, dynamic loading, and damage under loading were analyzed. It was confirmed that the infrared technique is very useful for the detection of the bearing damage.

Assessment of Bearing Damage by Ultrasonic Measurement (초음파 측정에 의한 베어링손상 평가)

  • LEE SANG-GUK;LEE In-CHEOL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.395-400
    • /
    • 2004
  • For the purpose of monitoring by ultrasonic test of the ball bearing conditions in rotating machinery, a system for their diagnosis was developed. ultrasonic technique is used to detect abnormal conditions in the bearing system. And various data such as frequency spectrum, energy and amplitude of ultrasonic signals, and ultrasonic parameters were acquired during experiments with the simulated ball bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was established. Bearing diagnosis system is composed of four parts as follows : sensing part for ultrasonic sensor and preamplifier, signal processing part for measuring frequency spectrum, energy and amplitude, interface part for connecting ultrasonic signal to PC using A/D converter, graphic display and software part for display of bearing condition and for managing of diagnosis program.

  • PDF

Study of ball bearing fatigue damage using vibration analysis: application to thrust ball bearings

  • Yessine, Toumi M.;Fabrice, Bolaers;Fabien, Bogard;Sebastien, Murer
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.325-336
    • /
    • 2015
  • This paper presents a study based on the damage due to the fatigue life of thrust ball bearings using vibratory analysis. The main contribution of this work lies in establishing a relation between modal damping and the rolling contact fatigue damage of the thrust ball bearing. Time domain signals and frequency spectra are extracted from both static and dynamic experiments. The first part of this research consists in measuring the damping of damaged thrust ball bearings using impact hammer characterization tests. In a second part, indented components representing spalled bearings are studied to determine the evolution of damping values in real-time vibration spectra using the random decrement method. Dynamic results, in good agreement with static tests, show that damping varies depending on the component's damage state. Therefore, the method detailed in this work will offer a possible technique to estimate the thrust ball bearing fatigue damage variation in presence of spalling.

An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems

  • Min, Jiyoung;Yun, Chung-Bang;Hong, Jung-Wuk
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.107-122
    • /
    • 2016
  • We propose an effective methodology using electromechanical impedance characteristics for estimating the remaining tensile force of tendons and simultaneously detecting damages of the anchorage blocks. Once one piezoelectric patch is attached on the anchor head and the other is bonded on the bearing plate, impedance responses are measured through these two patches under varying tensile force conditions. Then statistical indices are calculated from the impedances, and two types of relationship curves between the tensile force and the statistical index (TE Curve) and between statistical indices of two patches (SR Curve) are established. Those are considered as database for monitoring both the tendon and the anchorage system. If damage exists on the bearing plate, the statistical index of patch on the bearing plate would be out of bounds of the SR curve and damage can be detected. A change in the statistical index by damage is calibrated with the SR curve, and the tensile force can be estimated with the corrected index and the TE Curve. For validation of the developed methodology, experimental studies are performed on the scaled model of an anchorage system that is simplified only with 3 solid wedges, a 3-hole anchor head, and a bearing plate. Then, the methodology is applied to a real scale anchorage system that has 19 strands, wedges, an anchor head, a bearing plate, and a steel duct. It is observed that the proposed scheme gives quite accurate estimation of the remaining tensile forces. Therefore, this methodology has great potential for practical use to evaluate the remaining tensile forces and damage status in the post-tensioned structural members.

Evaluation on Bearing Capacity of End Girder Member with Local Corrosion (지점부 부재의 부식손상에 따른 강거더 단부 지압강도 평가)

  • Ahn, Jin Hee;Lee, Won Hong;Kim, In Tae;Jeong, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.74-82
    • /
    • 2017
  • Localized corrosions damages in their structural sections can be occurred affected by installed environment conditions with high temperature as near the coastline and humidity or their poor maintenance situation. In bearing supports of steel bridges, especially, lower web and vertical stiffener in end girder support can be easily corroded because of relatively higher humidity due to the narrow space in the end of girder and the wetted accumulated sediments affected by rain water or antifreezing admixture leaked from expansion joint. It can be related to change in their structural performance. In this study, thus, bearing strength test specimens were fabricated considering corrosion damage in the web and vertical stiffeners and the change in their bearing strengths were experimentally evaluated. From the test results, localized corrosion damage of structural members in the end girder affected the bearing strength of end girder support, especially, localized corrosion damage of the vertical stiffener relatively highly affected their bearing strengths.

A Study on Repair Case of Journal and Bearing Damage for 25MW Industrial Gas Turbine (25MW급 산업용 가스터빈의 저널과 베어링 손상 보수사례에 관한 연구)

  • Kim, Byung Ok;Sun, Kyung Ho;Lee, An Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.64-69
    • /
    • 2012
  • This paper deals with the study on repair case of journal shaft and bearing damage in 25MW industrial gas turbine caused by sudden blackout, operation mistake, and logic abnormal, etc. When a serious accident such as journal and bearing damage in a gas turbine occurs, the domestic local companies having the gas turbine are dependent on manufacturer for all maintenance and repair schedule until now. This case study shows that the damaged gas turbine is normally re-operated itself in domestic by establishing repair schedule in a short period of time, repairing damage journal shaft and tilting pad bearings, and performing rotating test for a reliability check. This paper can be regarded as the important case study of emergency test run experience of the refurbished 25MW gas turbine rotor.