• Title/Summary/Keyword: bearing capacity equation

Search Result 150, Processing Time 0.024 seconds

Effect of Thermal Conductivity of Bearing on the Lubrication Performance of Parallel Slider Bearing (베어링의 열전도율이 평행 슬라이더 베어링의 윤활성능에 미치는 영향)

  • Park, TaeJo;Lee, WonSeok;Park, JiBin
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.247-253
    • /
    • 2018
  • Temperature rise due to viscous shear of the lubricating oil generates hydrodynamic pressure, even if the lubricating surfaces are parallel. This effect, known as the thermal wedge effect, varies significantly with film-temperature boundary conditions. The bearing conducts a part of the heat generated; hence, the oil temperature varies with the thermal conductivity of the bearing. In this study, we analyze the effect of thermal conductivity on the thermohydrodynamic (THD) lubrication of parallel slider bearings. We numerically analyze the continuity equation, Navier-Stokes equation, energy equation including the temperature-viscosity and temperature-density relations for lubricants, and the heat conduction equation for bearing by creating a 2D model of the micro-bearing using the commercial computational fluid dynamics (CFD) code FLUENT. We then compare the variation in temperature, viscosity, and pressure distributions with the thermal conductivity. The results demonstrate that the thermal conductivity has a significant influence on THD lubrication characteristics of parallel slider bearings. The lower the thermal conductivity, the greater the pressure generation due to the thermal wedge effect resulting in a higher load-carrying capacity and smaller frictional force. The present results can function as the basic data for optimum bearing design; however, the applicability requires further studies on various operating conditions.

Analysis of a Journal and Thrust FDB and a Conical FDB in the Spindle Motor of a Computer Hard Disk Drive (HDD 스핀들 모터용 저널-스러스트 유체동압 베어링과 코니컬 유체동압 베어링의 특성해석비교)

  • Kim, Bum-Cho;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.478-483
    • /
    • 2005
  • This paper presents the comparison analysis of a Journal and thrust FDB (fluid dynamic bearing) and a conical FDB in a HDD spindle motor. The Reynolds equation is appropriately transformed to describe journal, thrust and conical bearing. Finite element method is applied to analyze the FDB by satisfying the continuity of mass and pressure at the interface between the hearings. The pressure field of the bearings is numerically approximated by applying the Reynolds boundary condition. The load and friction torque are obtained by integrating the pressure and the velocity gradient along the fluid film. The flying height of the spindle motor is measured to verify the proposed analytical result. This research shows that the conical bearing generates bigger load capacity and less friction torque than the journal and thrust bearing in a HDD spindle motor.

  • PDF

Estimation on End Vertical Bearing Capacity of Double Steel-Concrete Composite Pile Using Numerical Analysis (수치해석을 이용한 이중 강-콘크리트 합성말뚝 연직지지력 평가)

  • Jeongsoo, Kim;Jeongmin, Goo;Moonok, Kim;Chungryul, Jeong;Yunwook, Choo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.12
    • /
    • pp.5-15
    • /
    • 2022
  • Conventionally, because evaluation methods of the bearing capacity for double steel pipe-concrete composite pile design have not been established, the conventional vertical bearing capacity equations for steel hollow pile are used. However, there are severe differences between the predictions from these equations, and the most conservative one among vertical bearing capacity predictions are conventionally adopted as a design value. Consequently, the current prediction method for vertical bearing capacity of composite pile prediction composite pile causes design reliability and economical feasibility to be low. This paper investigated mechanical behaviors of a new composite pile, with a cross-section composed of double steel pipes filled with concrete (DSCT), vertical bearing capacities were analyzed for several DSCT pile conditions. Axisymmetric finite element models for DSCT pile and surrounding ground were created and they were used to analyze effects on behaviors of DSCT pile pile by embedding depth, stiffness of plugging material at pile tip, height of plugging material at pile tip, and rockbed material. Additionally, results from conventional design prediction equations for vertical bearing capacity at steel hollow pile tip were compared with that from numerical results, and the use of the conventional equations for steel hollow pile was examined to apply to that for DSCT pile.

Estimation of Bearing Capacity for Open-ended Pile in Sands Considering Soil Plugging (I) -Development of New Design Equation- (사질토지반에서 폐색효과를 고려한 개단말뚝의 지지력 산정 (I) - 새로운 지지력 산정식의 개발-)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.189-197
    • /
    • 2002
  • The bearing capacity of open-ended piles is affected by the degree of soil plugging, which is quantified by the incremental filling ratio, IFR. There is not at present a design criterion for open-ended piles that explicitly considers the effect of IFR on pile load capacity. In order to investigate this effect, model pile load tests using a calibration chamber were conducted on instrumented open-ended piles. The results of these tests show that the IFR can be estimated from the plug length ratio PLR, which is defined as the ratio of soil plug length to pile penetration depth. The unit base and shaft resistances decrease with increasing IFR. Based on the results of the model pile tests, new design equations for calculating base load capacity and shaft load capacity of open-ended piles are proposed.

A Study of Field Test on Bearing Capacity Increase Effect of Single Stone Column (단일쇄석말뚝의 지지력 증가효과에 관한 현장실험 연구)

  • Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.5-11
    • /
    • 2007
  • Among soft ground improvement methods by using granular material, the sand compaction pile method has been widely utilized in Korea, but, as a result of shortage and increase of unit price of sand, a necessity of an alternative method has been required. In this study, a series of in-situ static load tests for crushed-stone compaction piles were performed. Pile diameter was fixed to 700mm and areas of loading plates were changed. The static load tests were performed for area replacement ratios of 20, 30 and 40% respectively. Based on the test results, bearing capacity of single crushed-stone compaction pile was estimated. It showed that the settlement decreases as the replacement ratio increases. Also, a yielding capacity equation of the crushed-stone compaction pile considering replacement ratio was suggested.

A Study on the Load Carrying Capacity and Equivalence Friction Coefficient of a Textured Plane Bearing with Semi-spherical Dimples and Semi-ellipsoidal Dimples (반구형 및 반타원형으로 텍스처링된 평면 베어링의 부하지지능력과 등가마찰계수에 대한 해석)

  • Lee, Soo-Young;Kim, Pil-Kee;Seok, Jong-Hyuk;Seok, Jong-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.741-746
    • /
    • 2012
  • The increase of energetic efficiency in plane bearing is getting more important in the transfer mechanism of semi-conductor and display panel manufacturing processes. To accomplish this objective, the technique of surface texturing on bearing surface has recently emerged as one of the most effective candidates. In this study, the effects of various pattern parameters on two bearing performance indices(load carrying capacity and effective friction coefficient) are investigated through a semi-analytic method, i.e., the 2-dimensional Reynolds equation incorporated into the finite difference scheme. Here, cavitation effect is also taken into account by employing an appropriate numerical scheme. In this study, the patterns in the textured surface are composed of a series of semi-spheres or semi-ellipsoids in shape. The effects of their size and number density on the performance indices are examined through the performance of various numerical experiments. Also, the effects of the anisotropy of the semi-ellipsoidal pattern on the bearing's lubrication characteristics are investigated and discussed.

Bearing Capacity Analysis on Cyclic Loading of Soft Ground by Surface Reinforcement (표층처리지반에서의 반복하중재하시험을 통한 지지력 분석)

  • Kwak, Nokyung;Park, Minchul;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.5-17
    • /
    • 2012
  • The study of surface ground reinforcing method is supposed to be considered preferentially is not satisfied and also doesn't contemplate plastic flow because of repetitive drive of construction equipment. Also, Terzaghi's bearing-capacity equation and Yamanouchi's suggestion have been used to design the surface reinforcement, but most engineers depend on their experience and cases constructed before because of dispersed variables and inappropriate bearing-capacity factors. Hence, plate load test and repetitive plate load test were performed in the field which is reinforced with geotextile, Geogrid whose tensile strength are 200kN/m, 100kN/m and bamboo($0.4m{\times}0.4m$). The object of this study is to evaluate bearing capacity and behaviour of surface ground and to compare each reinforcement form test results. From the results bearing capacity ratio increased by a maximum of 1.5 times with bamboo reinforcement method comparing to others.

A Study on the Lubrication effects of surface roughness (표면조도가 윤활효과에 미치는 영향에 관한 연구)

  • 윤재복;윤문철
    • Tribology and Lubricants
    • /
    • v.3 no.1
    • /
    • pp.18-25
    • /
    • 1987
  • The influence of one sided striated surface roughness on load carrying capacity of a slider bearing is analyzed for very low clearance films. A Reynolds equation appropriate for slider bearing is derived and analyzed by the method of finite difference method. For a slider bearing with several simple roughness form, the pressure, load capacity and other parameters can be revealed and also this results can be stored in sequential data file. After all, their distribution can be displayed easily by using the CADG(Computer Aided Design and Graphics) program. Also exact solutions with this nemerical method are compared with those of the theory attributed to Tonder and White. The results reported here should find application in the computer peripherals where computer aided design and graphic package is needed.

Analysis of Bearing Capacity Characteristics on Granular Compaction Pile - focusing on the Model Test Results (조립토 다짐말뚝의 지지력 특성 분석 - 모형토조실험 결과를 중심으로)

  • Kang, Yun;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 2004
  • Granular compaction piles have the load bearing capacity of the soft ground increase and have the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and have the liquefaction caused by earthquake prevent using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. The Granular compaction piles are constructed by grouping it with a raft system. The confining pressure at the center of bulging failure depth is a major variable in relation to estimate for the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and varies the magnitude of the confining pressure. In this study, method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge and loaded area. Also, the ultimate bearing capacity of the granular compaction piles is evaluated on the basis of previous study on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests. And using the result from laboratory model tests, it is studied increase effect of the bearing capacity on the granular compaction piles and variance of coefficient of consolidation for the ground.

  • PDF

Bearing Capacity and Control Method of Driven Piles (기성말뚝의 지지력 거동해석과 시공관리방안)

  • 박영호;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.249-258
    • /
    • 1999
  • Dynamic load and static load tests are performed on steel pipe piles and concrete piles at five construction sites in highway to compare the difference of load bearing mechanisms. At each site, one steel pile is instrumented with electric strain gages and dynamic tests are performed on the pile during installation. Damages of strain gages due to the installation are checked and static test is performed upon the same pile after two or seven days as well. It shows that load transfer from side friction to base resistance behaves somewhat differently according to the results of load-settlement analysis obtained from PDA and static load test. Initial elastic stage of load settlement curves of two load tests is almost similar. But after the yielding point, dynamic resistance of pile behaves more stiffer than static resistance, thus, dynamic load test result might overestimate the real pile capacity compared with static result. Analysis of gage readings shows that unit skin friction increases exponentially with depth. The skin friction is mobilized at the 1∼2m above the pile tip and contributes to the considerable side resistance. Comparison of side and base resistances between the measured value and the calculated value by Meyerhof's bearing capacity equation using SPT N value shows that the calculated base resistance is higher than the measured. Therefore, contribution of side resistance to total capacity shouldn't be ignored or underestimated. Finally, based upon the overall test results, a construction control procedure is suggested.

  • PDF