• Title/Summary/Keyword: beams theory

Search Result 704, Processing Time 0.02 seconds

Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation

  • Chami, Khaldoune;Messafer, Tahar;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.91-101
    • /
    • 2020
  • This work presents an efficient and original hyperbolic shear deformation theory for the bending and dynamic behavior of functionally graded (FG) beams resting on Winkler - Pasternak foundations. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present theory, the equations of motion are derived from Hamilton's principle. Navier type analytical solutions are obtained for the bending and vibration problems. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and vibration behavior of functionally graded beams.

Influence of the porosities on the free vibration of FGM beams

  • Hadji, L.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.273-287
    • /
    • 2015
  • In this paper, a free vibration analysis of functionally graded beam made of porous material is presented. The material properties are supposed to vary along the thickness direction of the beam according to the rule of mixture, which is modified to approximate the material properties with the porosity phases. For this purpose, a new displacement field based on refined shear deformation theory is implemented. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present refined shear deformation beam theory, the equations of motion are derived from Hamilton's principle. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

Three-dimensional modelling of functionally graded beams using Saint-Venant's beam theory

  • Khebizi, Mourad;Guenfoud, Hamza;Guenfoud, Mohamed;El Fatmi, Rached
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.257-273
    • /
    • 2019
  • In this paper, the mechanical behaviour of functionally graded material beams is studied using the 3D Saint-Venant's theory, in which the section is free to warp in and out of its plane (Poisson's effects and out-of-plane warpings). The material properties of the FGM beam are distributed continuously through the thickness by several distributions, such as power-law distribution, exponential distribution, Mori-Tanaka schema and sigmoid distribution. The proposed method has been applied to study a simply supported FGM beam. The numerical results obtained are compared to other models in the literature, which show a high performance of the 3D exact theory used to describe the stress and strain fields in FGM beams.

Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory

  • Safa, Abdelkader;Hadji, Lazreg;Bourada, Mohamed;Zouatnia, Nafissa
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.329-336
    • /
    • 2019
  • An efficient shear deformation beam theory is developed for thermo-elastic vibration of FGM beams. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the on the surfaces of the beam without using shear correction factors. The material properties of the FGM beam are assumed to be temperature dependent, and change gradually in the thickness direction. Three cases of temperature distribution in the form of uniformity, linearity, and nonlinearity are considered through the beam thickness. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. The closed-form solutions of functionally graded beams are obtained using Navier solution. Numerical results are presented to investigate the effects of temperature distributions, material parameters, thermal moments and slenderness ratios on the natural frequencies. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

A Study on the Analysis of Anisotropic Curved Thin Beams and Anisotropic Curved Thick Beams (비등방성 얇은 곡선보 및 두꺼운 곡선보의 해석연구)

  • Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.116-120
    • /
    • 2007
  • In this study, it is presented analytic results of bending problems in the anisotropic curved thick beam and the anisotropic curved thin beam. The anisotropy is that the material properties are different in each directions and it is difficult to solve the analytical solutions because the behavior is complex. In applying numerical method to solve differential equations of anisotropic curved beams, this study uses the finite element method. Both thin beam theory and thick beam theory are used as the basic governing equations of bending problems in the anisotropic beams. The analytic results are compared between the anisotropic curved thick beams and the anisotropic curved thin beams.

  • PDF

Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory

  • Nejad, Mohammad Zamani;Hadi, Amin;Omidvari, Arash;Rastgoo, Abbas
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.417-425
    • /
    • 2018
  • The main aim of this paper is to investigate the bending of Euler-Bernouilli nano-beams made of bi-directional functionally graded materials (BDFGMs) using Eringen's non-local elasticity theory in the integral form with compare the differential form. To the best of the researchers' knowledge, in the literature, there is no study carried out into integral form of Eringen's non-local elasticity theory for bending analysis of BDFGM Euler-Bernoulli nano-beams with arbitrary functions. Material properties of nano-beam are assumed to change along the thickness and length directions according to arbitrary function. The approximate analytical solutions to the bending analysis of the BDFG nano-beam are derived by using the Rayleigh-Ritz method. The differential form of Eringen's non-local elasticity theory reveals with increasing size effect parameter, the flexibility of the nano-beam decreases, that this is unreasonable. This problem has been resolved in the integral form of the Eringen's model. For all boundary conditions, it is clearly seen that the integral form of Eringen's model predicts the softening effect of the non-local parameter as expected. Finally, the effects of changes of some important parameters such as material length scale, BDFG index on the values of deflection of nano-beam are studied.

An efficient numerical model for free vibration of temperature-dependent porous FG nano-scale beams using a nonlocal strain gradient theory

  • Tarek Merzouki;Mohammed SidAhmed Houari
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • The present study conducts a thorough analysis of thermal vibrations in functionally graded porous nanocomposite beams within a thermal setting. Investigating the temperature-dependent material properties of these beams, which continuously vary across their thickness in accordance with a power-law function, a finite element approach is developed. This approach utilizes a nonlocal strain gradient theory and accounts for a linear temperature rise. The analysis employs four different patterns of porosity distribution to characterize the functionally graded porous materials. A novel two-variable shear deformation beam nonlocal strain gradient theory, based on trigonometric functions, is introduced to examine the combined effects of nonlocal stress and strain gradient on these beams. The derived governing equations are solved through a 3-nodes beam element. A comprehensive parametric study delves into the influence of structural parameters, such as thicknessratio, beam length, nonlocal scale parameter, and strain gradient parameter. Furthermore, the study explores the impact of thermal effects, porosity distribution forms, and material distribution profiles on the free vibration of temperature-dependent FG nanobeams. The results reveal the substantial influence of these effects on the vibration behavior of functionally graded nanobeams under thermal conditions. This research presents a finite element approach to examine the thermo-mechanical behavior of nonlocal temperature-dependent FG nanobeams, filling the gap where analytical results are unavailable.

Gemetrical Non-Linear Behavior of Simply Supported Tapered Beams (단순지지 변단면 보의 기하학적 비선형 거동)

  • 이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.106-114
    • /
    • 1999
  • This paper explores the geometrical non-linear behavior of the simply supported tapered beams subject to the trapezoidal distributed load and end moments. In order to apply the Bernoulli -Euler beam theory to this tapered beam, the bending moment equation on any point of the elastical is obtained by the redistribution of trapezoidal distributed load. On the basis of the bending moment equation and the BErnoulli-Euler beam theory, the differential equations governging the elastical of such beams are derived and solved numerically by using the Runge-Jutta method and the trial and error method. The three kinds of tapered beams (i.e. width, depth and square tapers) are analyzed in this study. The numerical results of non-linear behavior obtained in this study from the simply supported tapered beams are appeared to be quite well according to the results from the reference . As the numerical results, the elastica, the stress resultants and the load-displacement curves are given in the figures.

  • PDF

Nonlinear thermal displacements of laminated composite beams

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.691-705
    • /
    • 2018
  • In this paper, nonlinear displacements of laminated composite beams are investigated under non-uniform temperature rising with temperature dependent physical properties. Total Lagrangian approach is used in conjunction with the Timoshenko beam theory for nonlinear kinematic model. Material properties of the laminated composite beam are temperature dependent. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. The distinctive feature of this study is nonlinear thermal analysis of Timoshenko Laminated beams full geometric non-linearity and by using finite element method. In this study, the differences between temperature dependent and independent physical properties are investigated for laminated composite beams for nonlinear case. Effects of fiber orientation angles, the stacking sequence of laminates and temperature on the nonlinear displacements are examined and discussed in detail.

Comparative study on the bending of exponential and sigmoidal sandwich beams under thermal conditions

  • Aman, Garg;Mohamed-Ouejdi, Belarbi;Li, Li;Hanuman D., Chalak;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.217-231
    • /
    • 2023
  • The bending analysis of sandwich functionally graded (FG) beams under temperature circumstances is performed in this article utilizing Navier's solution-based parabolic shear deformation theory. For the first time, a comparative study has been carried out between the exponential and sigmoidal sandwich FGM beams under thermal conditions. During this investigation, temperature-dependent material characteristics are postulated. Both symmetric and unsymmetric sandwich examples have been studied. The effect of gradation law, gradation coefficient, and thickness scheme on beam behavior has been thoroughly investigated. Three possible temperature combinations at the top and bottom surfaces of the beam are also investigated. Beams with a higher proportion of ceramic to metal are shown to be more resistant to thermal stresses than beams with a higher proportion of metal.