• Title/Summary/Keyword: beams

Search Result 5,778, Processing Time 0.026 seconds

Evaluation of Flexural Performance of RC Beams Using Polymer Cementitous Mortar (폴리머시멘트 모르터를 이용한 RC 보의 휨 성능평가)

  • 양동석;고원준;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.479-484
    • /
    • 2000
  • An experimental study to investigate the structural performance of reinforced concrete beams repaired by Polymer Cementitous Mortar in the tension zone is described. Preliminary trials with beams in which beams tensile reinforcing steel was exposed over 100%, 80% and 60% of their length have led to tests on $5\times25$cm beams over a 200cm span to examine the experimental parameter. Attention is concentrated upon overall bending capacity, deflection and crack development of repaired beams.

  • PDF

Optimum design of laterally-supported castellated beams using tug of war optimization algorithm

  • Kaveh, A.;Shokohi, F.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.533-553
    • /
    • 2016
  • In this paper, the recently developed meta-heuristic algorithm called tug of war optimization is applied to optimal design of castellated beams. Two common types of laterally supported castellated beams are considered as design problems: beams with hexagonal openings and beams with circular openings. Here, castellated beams have been studied for two cases: beams without filled holes and beams with end-filled holes. Also, tug of war optimization algorithm is utilized for obtaining the solution of these design problems. For this purpose, the minimum cost is taken as the objective function, and some benchmark problems are solved from literature.

Plated Continuous RC-Beams (플레이트로 보강된 철근콘크리트 연속보에 대한 실험적 연구)

  • 박성무;이형석;김정숙
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.63-68
    • /
    • 2001
  • It is now common practice to strengthen reinforced concrete beams by steel plates to their tention surfaces. Such plated beams are designed for flexure using conventional prediction equation and assumption that full bond will be developed between the concrete and the plates. Very advanced design rules have already been developed at the University of Adelaide for adhesive bonding steel plates to reinforced concrete beams in order to prevent premature debonding. This work on plated continuous reinforced concrete beams is to determine experimentally whether these design rules, that were developed for steel plated simply supported beams, could be applied to steel and FRP plated continuous beams. This paper also suggests how to increase the ductility of plated beams.

  • PDF

Shear Strength of Prestressed Steel Fiber Concrete I-Beams

  • Tadepalli, Padmanabha Rao;Dhonde, Hemant B.;Mo, Y.L.;Hsu, Thomas T.C.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.267-281
    • /
    • 2015
  • Six full-scale prestressed concrete (PC) I-beams with steel fibers were tested to failure in this work. Beams were cast without any traditional transverse steel reinforcement. The main objective of the study was to determine the effects of two variables-the shear-span-to-depth ratio and steel fiber dosage, on the web-shear and flexural-shear modes of beam failure. The beams were subjected to concentrated vertical loads up to their maximum shear or moment capacity using four hydraulic actuators in load and displacement control mode. During the load tests, vertical deflections and displacements at several critical points on the web in the end zone of the beams were measured. From the load tests, it was observed that the shear capacities of the beams increased significantly due to the addition of steel fibers in concrete. Complete replacement of traditional shear reinforcement with steel fibers also increased the ductility and energy dissipation capacity of the PC I-beams.

Behaviors of CAD and CUS Thick-walled Composite I-Beam Under Torsional Load (비틀림 하중을 받는 두꺼운 복합재료 빔의 거동)

  • Park, Mi-Jung;Chun, Heoung-Jae;Byun, Jun-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.202-206
    • /
    • 2005
  • Most of studies on the open section composite beams are confined to the thin composite beams. There are some works focused on the thick composite beams but they are limited only to closed section beams. Therefore, it is required to develop an appropriate model to analyze the thick open section composite beams. In this study, the cantilever beams of two specific lay-up configurations are considered which are the circumferentially asymmetric stiffness (CAS) and circumferentially uniform stiffness (CUS) beams. Under the torsional loading, loading induced deformations are obtained for the thick beams using the suggested model. The model includes coupled stiffness and secondary warping effects. The results are compared with those obtained using thin beam model to observe the thickness effects. Those results are also compared with the finite element analysis results.

  • PDF

Inelastic lateral-torsional buckling strengths of stepped I-beams subjected to general loading condition

  • Park, Jong Sup;Park, Yi Seul
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.275-289
    • /
    • 2013
  • The cross sections of multi-span beams are sometimes suddenly increased at the interior support of continuous beams to resist high negative moment. An earlier study on elastic lateral torsional buckling of stepped beams was conducted to propose new design equations. This research aims to continue the earlier study by considering the effect of inelastic buckling of stepped beams subjected to pure bending and general loading condition. A three-dimensional finite element-program ABAQUS and a statistical program MINITAB were used in the development of new design equations. The inelastic lateral torsional buckling strengths of 36 and 27 models for singly and doubly stepped beams, respectively, were investigated. The general loading condition consists of 15 loading cases based on the number of inflection point within the unbraced length of the stepped beams. The combined effects of residual stresses and geometrical imperfection were also considered to evaluate the inelastic buckling strengths. The proposed equations in this study will definitely improve current design methods for the inelastic lateral-torsional buckling of stepped beams and will increase efficiency in building and bridge design.

Post-heating behavior of concrete beams reinforced with fiber reinforced polymer bars

  • Irshidat, Mohammad R.;Haddad, Rami H.;Almahmoud, Hanadi
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1253-1269
    • /
    • 2015
  • The present paper investigates the post heating behavior of concrete beams reinforced with fiber reinforced polymer (FRP) bars, namely carbon fiber reinforced polymer (CFRP) bars and glass fiber reinforced polymer (GFRP) bars. Thirty rectangular concrete beams were prepared and cured for 28 days. Then, beams were either subjected (in duplicates) to elevated temperatures in the range (100 to $500^{\circ}C$) or left at room temperature before tested under four point loading for flexural response. Experimental results showed that beams, reinforced with CFRP and GFRP bars and subjected to temperatures below $300^{\circ}C$, showed better mechanical performance than that of corresponding ones with conventional reinforcing steel bars. The results also revealed that ultimate load capacity and stiffness pertaining to beams with FRP reinforcement decreased, yet their ultimate deflection and toughness increased with higher temperatures. All beams reinforced with FRP materials, except those post-heated to $500^{\circ}C$, failed by concrete crushing followed by tension failure of FRP bars.

Long-term deflection of high-strength fiber reinforced concrete beams

  • Ashour, Samir A.;Mahmood, Khalid;Wafa, Faisal F.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.531-546
    • /
    • 1999
  • The paper presents an experimental and theoretical study on the influence of steel fibers and longitudinal tension and compression reinforcements on immediate and long-term deflections of high-strength concrete beams of 85 MPa (12,300 psi) compressive, strength. Test results of eighteen beams subjected to sustained load for 180 days show that the deflection behavior depends on the longitudinal tension and compression reinforcement ratios and fiber content; excessive amount of compression reinforcement and fibers may have an unfavorable effect on the long-term deflections. The beams having the ACI Code's minimum longitudinal tension reinforcement showed much higher time-dependent deflection to immediate deflection ratio, when compared with that of the beams having about 50 percent of the balanced tension reinforcement. The results of theoretical analysis of tested beams and those of a parametric study show that the influence of steel fibers in increasing the moment of inertia of cracked transformed sections is most pronounced in beams having small amount of longitudinal tension reinforcement.

Strengthening of RC beams with prefabricated RC U cross-sectional plates

  • Demir, Ali;Tekin, Muhammed;Turali, Tezcan;Bagci, Muhiddin
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.673-685
    • /
    • 2014
  • The topic of this study is to strengthen cracked beams with prefabricated RC U cross-sectional plates. The damaged beams were repaired by epoxy based glue. The repaired beams were strengthened using prefabricated plates. The strengthening plates were bonded to the bottom and side faces of the beams by anchorage rods and epoxy. The strengthened beams were incrementally loaded up to maximum load capacities. The experimental results were satisfactory since the load carrying capacities of damaged beams were increased approximately 76% due to strengthening. It was observed that strengthening plates had a dominant effect on the performance of beams in terms of both the post-elastic strength enhancement and the ductility. The experimental program was supported by a three-dimensional nonlinear finite element analysis. The experimental results were compared with the results obtained from the beam modeled with ANSYS finite element program.

Numerical analysis of second-order effects of externally prestressed concrete beams

  • Lou, Tiejiong;Xiang, Yiqiang
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.631-643
    • /
    • 2010
  • A numerical procedure for the geometrical and material nonlinear analysis of concrete beams prestressed with external tendons is described, where the effects of external prestressing are treated as the equivalent loads applied on the concrete beams. The geometrical nonlinearity is considered not only the eccentricity variations of external tendons (second-order effects) but also the large displacement effects of the structure. The numerical method can predict the nonlinear response of externally prestressed concrete beams throughout the entire loading history with considerable accuracy. An evaluation of second-order effects of externally prestressed concrete beams is carried out using the proposed analysis. The analysis shows that the second-order effects have significant influence on the response characteristics of externally prestressed concrete beams. They lead to inferior ultimate load and strength capacities and a lower ultimate stress increase in tendons. Based on the current analysis, it is recommended that, for simply-supported externally prestressed beams with straight horizontal tendons, one deviator at midspan instead of two deviators at one-third span be furnished to minimize these effects.