• Title/Summary/Keyword: beamforming technique

Search Result 184, Processing Time 0.027 seconds

Wideband adaptive beamforming method using subarrays in acoustic vector sensor linear array (부배열을 이용한 음향벡터센서 선배열의 광대역 적응빔형성기법)

  • Kim, Jeong-Soo;Kim, Chang-Jin;Lee, Young-Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.395-402
    • /
    • 2016
  • In this paper, a wideband adaptive beamforming approach for an acoustic vector sensor linear array is presented. It is a very important issue to estimate the stable covariance matrix for adaptive beamforming. In the conventional wideband adaptive beamforming based on coherent signal-subspace (CSS) processing, the error of bearing estimates is resulted from the focusing matrix estimation and the large number of data snapshot is necessary. To alleviate the estimation error and snapshot deficiency in estimating covariance matrix, the steered covariance matrix method in the pressure sensor is extended to the vector sensor array, and the subarray technique is incorporated. By this technique, more accurate azimuth estimates and a stable covariance matrix can be obtained with a small number of data snapshot. Through simulation, the azimuth estimation performance of the proposed beamforming method and a wideband adaptive beamforming based on CSS processing are assessed.

Antenna Array Calibration for Digital Beamforming (디지털 빔 형성을 위한 배열 안테나 오차 보정)

  • 최희영;박형근;김영수;방승찬
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • There are many antenna array errors. They will distort the array beam pattern and result in an increased sidelobe level. A calibration technique is proposed for correcting the antenna array errors such as mutual coupling and unequal feeder characteristics. These are modeled as a matrix representing the interaction between the radiating elements. The matrix is estimated from the measured array response vectors. The antenna array errors are corrected by modifying the beamforming weight vector. It is verified by the electromagnetic simulation and experiment that the proposed technique reduces the sidelobe level and increases the antenna gain.

Interference Management Technique using Beamforming for Unlicensed Band (비면허 대역에서의 빔포밍을 이용한 간섭 제어 기법)

  • Kim, Hyung-jin;Oh, Jung-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.806-807
    • /
    • 2015
  • In this paper, we investigate the beam-forming technologies used for increasing the capacity of Wi-Fi systems. We present the international research trend and key technologies of some companies. Finally, we propose a technique for improving the performance of a radio link using beamforming technology in a unlicenced band.

  • PDF

Adaptive beamforming for a PF-OFDM system using LMS algorithm (LMS기반 PF-OFDM에서의 적응 빔포밍 설계)

  • Yoo, Kyung-Rul;Oh, Jun-Suk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.119-123
    • /
    • 2006
  • The orthogonal frequency-division multiplexing (OFDM) technique is well known to be robust against the frequency-selective fading in wireless channels. It is due to the exploitation of a guard interval that is inserted at beginning of each OFDM symbol. Based on the conventional OFDM and a polyphase filtered orthogonal frequency division multiplexing (PF-OFDM) technique, we developed an adaptive beamforming algorithm for antenna arrays. The proposed algorithm would lead to an efficient use of channel, since it is possible to eliminate a guard interval and also easily suppress interchannel interference at the same time. In this paper, a series of computer simulations have been provided to show the performance of the proposed system.

Link Quality Enhancement with Beamforming Using Kalman-based Motion Tracking for Maritime Communication

  • Kyeongjea Lee;Joo-Hyun Jo;Sungyoon Cho;Kiwon Kwon;Dong Ku Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1659-1674
    • /
    • 2024
  • Conventional maritime communication struggles to provide high data rate services for Internet of Things (IoT) devices due to the variability of maritime environments, making it challenging to ensure consistent connectivity for onboard sensors and devices. To resolve this, we perform mathematical modeling of the maritime channel and compare it with real measurement data. Through the modeled channel, we verify the received beam gain at buoys on the ocean surface. Additionally, leveraging the modeled wave motions, we estimate future angles of the buoy to use the Extended Kalman Filter (EKF) for design beamforming strategies that adapt to the evolving maritime environment over time. We further validate the effectiveness of these strategies by assessing the results from an outage probability perspective. focuses on improving maritime communication by developing a dynamic model of the maritime channel and implementing a Kalman filter-based buoy motion tracking system. This system is designed to enable precise beamforming, a technique used to direct communication signals more accurately. By improving beamforming, the aim is to enhance the quality of communication links, even in challenging maritime conditions like rough seas and varying sea states. In our simulations that consider realistic wave motions, you've observed significant improvements in link quality due to the enhanced beamforming technique. These improvements are particularly notable in environments with high sea states, where communication challenges are typically more pronounced. The progress made in this area is not just a technical achievement; it has broad implications for the future of maritime communication technologies. This paper promises to revolutionize the way we approach communication in maritime environments, paving the way for more reliable and efficient information exchange on the seas.

Frequency translation approach for transmission beamforming in FDD wireless communication systems with basestation arrays (기지국 안테나 배열을 이용한 FDD 방식의 무선통신 시스템에서 송신 빔 형성을 위한 주파수 변환 방식)

  • ;Shawn P.Stapleton
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.5
    • /
    • pp.1-14
    • /
    • 1997
  • We consider transmission beamforming techniques for frequency-division-duplex (FDD) wireless communication systems using adaptive arrays to improve the signal quality of the array transmission link. We develop a simple effective transmission beamforming technique based on an approximated frequency tranlsation (AFT) to derive the tranmsiion beamforming weights from the uplink channel vector. This technique exploits the invariance of the short-time averaged fast fading statistics to small frequency translations. A simple approximate relationship that relates the transmission channel vector to the reception channel vector is derived. We have developed its practical alternative in which the frequency translation of the channel vector is performed at the principal angle of arrival (AOA) of the u;link synthestic angular spectrum instead of the mean AOA. To analyze the performance of the proposed methods, we consider the power loss incurred by applying the estimated channel vector instead of the true downlink channel vector. The performance is analyzed as a function of the mean AOA, the angular spread, the number of elements, frequncy difference between the uplink and the downlink, and the angle distribution. Their performance is also compared with that of the direct weight reuse method and the AOA based methods.

  • PDF

Cognitive Beamforming Based Smart Metering for Coexistence with Wireless Local Area Networks

  • Lee, Keonkook;Chae, Chan-Byoung;Sung, Tae-Kyung;Kang, Joonhyuk
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.619-628
    • /
    • 2012
  • The ZigBee network has been considered to monitor electricity usage of home appliances in the smart grid network. ZigBee, however, may suffer from a coexistence problem with wireless local area network (WLAN). In this paper, to resolve the coexistence problem between ZigBee network and WLAN, we propose a new protocol constructing a cognitive smart grid network for supporting monitoring of home appliances. In the proposed protocol, home appliances first estimates the transmission timing and channel information of WLAN by reading request to send/clear to send (RTS/CTS) frames of WLAN. Next, based on the estimated information, home appliances transmit a data at the same time as WLAN transmission. To manage the interference between WLAN and smart grid network, we propose a cognitive beamforming algorithm. The beamforming algorithm is designed to guaranteeing zero interference to WLAN while satisfying a required rate for smart metering. We also propose an energy efficient rate adaptation algorithm. By slowing down the transmission rate while satisfying an imperceptible impact of quality of service (QoS) of the receiver, the home appliance can significantly save transmit power. Numerical results show that the proposed multiple antenna technique provides reliable communications for smart metering with reduced power comparing to the simple transmission technique.

Interference Avoidance Beamforming for Relay-Based Cellular Networks (릴레이 기반 셀룰러 네트웍을 위한 간섭 회피 빔 성형 기법)

  • Mun, Cheol;Jung, Chang-Kyoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1194-1199
    • /
    • 2010
  • In this paper, for a relay-based cellular network, a interference avoidance beamforming technique is proposed to enhance direct link capacity while minimizing loss in the capacity of concurrent relaying link. A direct link is transmitted by beamforming at the transmitter, and the relaying link with the least interference to the direct link is scheduled to transmit data by a collision avoidance scheduling algorithm. Simulation results show that the proposed IA beamforming provides a considerable direct link capacity enhancement while minimizing relaying link capacity loss by effectively mitigating inference between concurrent direct and relaying links only with limited feedback.

Adaptive Transmission & Receiving Technology Considering Spatial Channel Correlation in Multiple Antenna Systems (공간 채널 상관도에 따른 다중 안테나 시스템의 적응 송.수신 기법)

  • Park Sung-Ho;Kim Kyoo-Hyun;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.844-855
    • /
    • 2006
  • The communication system using multiple antennas improves link reliability or system capacity using tx & rx diversity, spatial multiplexing, and beamforming technique with services and characteristics of channel environment. This system is sensitive to spatial channel environment. In case of diversity, the lower correlation among links as a LoS environment, the better performance is acquired. In practical channel environment, However, there is high correlation, and there is high performance difference between ideal case and practical case. On the contrary, in case of beamforming, the higher correlation among links, the better performance is acquired. If we use the spatial adaptive transmission technique with spatial channel characteristics, we can get the system that maintains minimum link reliability and guarantees the overall system performance. In this paper, we propose the adaptive transmission and reception technique which use diversity or beamforming technique with channel characteristics.

Mode Selection Technique Between Antenna Grouping and Beamforming for MIMO Communication Systems (다중 입출력 시스템에서 안테나 그룹화와 빔 형성 사이의 모드 선택 기법)

  • Kim, Kyung-Chul;Lee, Jung-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.147-154
    • /
    • 2009
  • Antenna grouping algorithm is hybrid of beamforming and spatial multiplexing. In antenna grouping system, we partition $N_t$ transmit antennas into $N_r$ groups and use beamforming in a group, spatial multiplexing between groups. We can transmit $N_r$ data streams in the $N_t{\times}N_r$ antenna grouping system. With antenna grouping, we can achieve diversity gain through beamforming, and high spectral efficiency through spatial multiplexing. But if channel is ill-conditioned or there are some correlations between antennas, the performance of antenna grouping is seriously degraded and in that case, beamforming is the best transmit strategy. By selecting the antenna grouping mode when channel is well-conditioned and by selecting the beamforming mode when channel is ill-conditioned, we can prevent serious fluctuation of BER performance caused by varying channel condition and achieve the best BER performance. In this paper, we investigate mode selection algorithm which can select antenna grouping mode or beamforming mode. we also propose a simple mode selection criterion.