• Title/Summary/Keyword: beam-column joints

Search Result 408, Processing Time 0.023 seconds

Experimental evaluation of external beam-column joints reinforced by deformed and plain bar

  • Adibi, Mahdi;Shafaei, Jalil;Aliakbari, Fatemeh
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.113-127
    • /
    • 2020
  • In this study, the behavior of external beam-column joints reinforced by plain and deformed bars with non-seismic reinforcement details is investigated and compared. The beam-column joints represented in this study include a benchmark specimen by seismic details in accordance with ACI 318M-11 requirements and four other deficient specimens. The main defects of the non-seismic beam-column joints included use of plain bar, absence of transverse steel hoops, and the anchorage condition of longitudinal reinforcements. The experimental results indicate that using of plain bars in non-seismic beam-column joints has significantly affected the failure modes. The main failure mode of the non-seismic beam-column joints reinforced by deformed bars was the accumulation of shear cracks in the joint region, while the failure mode of the non-seismic beam-column joints reinforced by plain bars was deep cracks at the joint face and intersection of beam and column and there was only miner diagonal shear cracking at the joint region. In the other way, use of plain bars for reinforcing concrete can cause the behavior of the substructure to be controlled by slip of the beam longitudinal bars. The experimental results show that the ductility of non-seismic beam-column joints reinforced by plain bars has not decreased compared to the beam-column joints reinforced by deformed bars due to lack of mechanical interlock between plain bars and concrete. Also it can be seen a little increase in ductility of substructure due to existence of hooks at the end of the development length of the bars.

Predicting the failure modes of monotonically loaded reinforced concrete exterior beam-column joints

  • Bakir, Pelin G.;Boduroglu, Hasan M.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.307-330
    • /
    • 2002
  • This study aims at postulating a simple methodology for predicting the failure modes of monotonically loaded reinforced concrete beam-column joints. All the factors that affect the failure modes of joints are discussed in detail using an experimental database of monotonically loaded exterior beam-column joints. The relative contributions of the strut and truss mechanisms to joint shear strength are determined based on the test results. A simple design equation for the beam longitudinal reinforcement ratio for joints with low, medium and high amount of stirrups is developed. The factors influencing the failure modes of monotonically loaded exterior beam-column joints are investigated in detail. Design charts that predict the failure modes of exterior beam-column connections both with and without stirrups are developed. Experimental data are compared with the design charts. The results show that the simple methodology gives very accurate predictions of the failure modes.

Experimental study on simplified steel reinforced concrete beam-column joints in construction technology

  • Teraoka, Masaru;Morita, Koji;Sasaki, Satoshi;Katsura, Daisuke
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.295-312
    • /
    • 2001
  • The purpose of this paper is to propose a new type of steel reinforced concrete (SRC) beam-column joints and to examine the structural performance of the proposed joints, which simplify the construction procedure of steel fabrication, welding works, concrete casting and joint strengthening. In the proposed beam-column joints, the steel element of columns forms continuously built-in crossing of H-sections (${\Box}$), with adjacent flanges of column being connected by horizontal stiffeners in a joint at the level of the beam flanges. In addition, simplified lateral reinforcement (${\Box}$) is adopted in a joint to confine the longitudinal reinforcing bars in columns. Experimental and analytical studies have been carried out to estimate the structural performance of the proposed joints. Twelve cruciform specimens and seven SRC beam-column subassemblage specimens were prepared and tested. The following can be concluded from this study: (1) SRC subassemblages with the proposed beam-column joints show adequate seismic performances which are superior to the demand of the current code; (2) The yield and ultimate strength capacities of the beam-to-column connections can be estimated by analysis based on the yield line theory; (3) The skeleton curves and the ultimate shear capacities of the beam-column joint panel are predicted with a fair degree of accuracy by considering a simple stress transfer mechanism.

Behaviour and design of high-strength steel beam-to-column joints

  • Li, Dongxu;Uy, Brian;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • This paper presents a finite element model for predicting the behaviour of high-strength steel bolted beam-to-column joints under monotonic loading. The developed numerical model considers the effects of material nonlinearities and geometric nonlinearities. The accuracy of the developed model is examined by comparing the predicted results with independent experimental results. It is demonstrated that the proposed model accurately predicts the ultimate flexural resistances and moment-rotation curves for high-strength steel bolted beam-to-column joints. Mechanical performance of three joint configurations with various design details is examined. A parametric study is carried out to investigate the effects of key design parameters on the behaviour of bolted beam-to-column joints with double-extended endplates. The plastic flexural capacities of the beam-to-column joints from the experimental programme and numerical analysis are compared with the current codes of practice. It is found that the initial stiffness and plastic flexural resistance of the high-strength steel beam-to-column joints are overestimated. Proper modifications need to be conducted to ensure the current analytical method can be safely used for the bolted beam-to-column joints with high-performance materials.

Experimental research on load-bearing capacity of cast steel joints for beam-to-column

  • Han, Qinghua;Liu, Mingjie;Lu, Yan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.67-83
    • /
    • 2015
  • The load transfer mechanism and load-bearing capacity of cast steel joints for H-shaped beam to square tube column connection are studied based on the deformation compatibility theory. Then the monotonic tensile experiments are conducted for 12 specimens about the cast steel joints for H-shaped beam to square tube column connection. The findings are that the tensile bearing capacity of the cast steel joints for beam-column connection depends on the ring of cast steel stiffener. The tensile fracture happens at the ring of the cast steel stiffener when the joint fails. The thickness of square tube column has little influence on the bearing capacity of the joint. The square tube column buckles while the joint without concrete filled, but the strength failure happens for the joint with concrete filled column. And the length of welding connection between square tube column and cast steel stiffener has little influence on the load-bearing capacity of the cast steel joint. Finally it is shown that the load-bearing capacity of the joints for H-shaped beam to concrete filled square tube column connection is larger than that of the joints for H-shaped beam to square tube column connection by 10% to 15%.

Performance evaluation of different strengthening measures for exterior RC beam-column joints under opening moments

  • Dar, M. Adil;Subramanian, N.;Pande, Sumeet;Dar, A.R.;Raju, J.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.243-254
    • /
    • 2020
  • Devastating RC structural failures in the past have identified that the behavior of beam-column joints is more critical and significantly governs the global structural response under seismic loading. The congestion of reinforcement at the beam-column joints with other constructional difficulties has escalated the attention required for strengthening RC beam-column joints. In this context, numerous studies have been carried out in the past, which mainly focused on jacketing the joints with different materials. However, there is no comparative study of different approaches used to strengthen RC beam-column joints, from efficiency and cost perspective. This paper presents a detailed investigation carried out to study the various strengthening schemes of exterior RC beam-column joints, viz., steel fiber reinforcement, carbon fiber reinforced polymer (CFRP) strengthening, steel haunch strengthening, and confining joint reinforcement. The effectiveness of each scheme was evaluated experimentally. These specimens were tested under horizontal loading that produced opening moments on the joints and their behavior was studied with emphasis on strength, displacement ductility, stiffness, and failure mechanism. Special attention was given to the study of crack-width.

Behavior of geopolymer and conventional concrete beam column joints under reverse cyclic loading

  • Raj, S. Deepa;Ganesan, N.;Abraham, Ruby;Raju, Anumol
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.161-172
    • /
    • 2016
  • An experimental investigation was carried out on the strength and behavior plain and fiber reinforced geopolymer concrete beam column joints and the results were compared with plain and steel fiber reinforced conventional concrete beam column joints. The volume fraction of fibers used was 0.5%. A total of six Geopolymer concrete joints and four conventional concrete joints were cast and tested under reversed cyclic loading to evaluate the performance of the joints. First crack load, ultimate load, energy absorption capacity, energy dissipation capacity stiffness degradation and moment-curvature relation were evaluated from the test results. The comparison of test results revealed that the strength and behavior of plain and fiber reinforced geopolymer concrete beam column joints are marginally better than corresponding conventional concrete beam column joints.

Parametrical study of the behavior of exterior unreinforced concrete beam-column joints through numerical modeling

  • Silva, Matheus F.A.;Haach, Vladimir G.
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.215-233
    • /
    • 2016
  • Exterior beam-column joints are structural elements that ensure connection between beams and columns. The joint strength is generally assumed to be governed by the structural element of lowest load capacity (beam or column), however, the joint may be the weakest link. The joint shear behavior is still not well understood due to the influence of several variables, such as geometry of the connection, stress level in the column, concrete strength and longitudinal beam reinforcement. A parametrical study based only on experiments would be impracticable and not necessarily exposes the failure mechanisms. This paper reports on a set of numerical simulations conducted in DIANA$^{(R)}$ software for the investigation of the shear strength of exterior joints. The geometry of the joints and stress level on the column are the variables evaluated. Results have led to empirical expressions that provide the shear strength of unreinforced exterior beam-column joints.

Retrofitting of exterior RC beam-column joints using ferrocement jackets

  • Bansal, Prem Pal;Kumar, Maneek;Dar, Manzoor Ahmed
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.313-328
    • /
    • 2016
  • Beam-column joints are recognized as one of the most critical and vulnerable zones of a Reinforced Concrete (RC) moment resisting structure subjected to seismic loads. The performance of the deficient beam-column joints can be improved by retrofitting these joints by jacketing them with varied materials like concrete, steel, FRP and ferrocement. In the present study strength behavior of RCC exterior beam-column joints, initially loaded to a prefixed percentage of the ultimate load, and retrofitted using ferrocement jacketing using two different wrapping schemes has been studied and presented. In retrofitting scheme, RS-I, wire mesh is provided in L shape at top and at bottom of the beam-column joint, whereas, in scheme RS-II along with wire mesh in L shape at top and bottom wire mesh is also provided diagonally to the joint. The results of these retrofitted beam-column joints have been compared with those of the controlled joint specimens. The results show an improvement in the ultimate load carrying capacity and yield load of the retrofitted specimens. However, no improvement in the ductility and energy absorption has been observed.

Research on rotation capacity of the new precast concrete assemble beam-column joints

  • Han, Chun;Li, Qingning;Wang, Xin;Jiang, Weishan;Li, Wei
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.613-625
    • /
    • 2016
  • The joints of the new prefabricated concrete assemble beam-column joints are put together by the hybrid joints of inserting steel under post-tensioned and non-prestressed force and both beams and columns adopt prefabricated components. The low cyclic loading test has been performed on seven test specimens of beam-column joints. Based on the experimental result, the rotation capacity of the joints is studied and the $M-{\theta}$ relation curve is obtained. According to Eurocode 3: Design of steel structures and based on the initial rotational stiffness, the joints are divided into three types; by equivalent bending-resistant stiffness to the precast beam, the equivalent modulus of elasticity $E_e$ is elicited with the superposition method; the beam length is figured out that satisfies the rigid joints and after meeting the requirements of application and safety, the new prefabricated concrete assemble beam-column joints can be regarded as the rigid joints; the design formula adopted by the standard of concrete joint classification is theoretically derived, thereby providing a theoretical basis for the new prefabricated concrete structure.