• 제목/요약/키워드: beam-column frame

검색결과 459건 처리시간 0.028초

고정반복법에 의한 암시적 HHT 시간적분법을 이용한 철근콘크리트 골조구조물의 실시간 하이브리드실험 (Real-Time Hybrid Testing Using a Fixed Iteration Implicit HHT Time Integration Method for a Reinforced Concrete Frame)

  • 강대흥;김성일
    • 한국지진공학회논문집
    • /
    • 제15권5호
    • /
    • pp.11-24
    • /
    • 2011
  • 고정반복법에 의한 암시적 HHT 시간적분법을 이용하여 3층 3경간 철근콘크리트 골조구조물을 수치해석모형과 물리적 분구조모형으로 나누어 실시간 하이브리드실험을 실시하였다. 물리적 부분구조모형으로는 1층 내부 비연성기둥 1개소가 선택되었고, 수치해석모형에 일축 방향의 지진하중을 시편이 심한 손상에 의하여 파괴에 이를 때까지 작용시켰다. 비선형 유한요소해석 프로그램인 Mercury가 실시간 하이브리드실험을 위하여 새로이 개발 및 적용되었다. 실험결과는 물리적 부분구조모형의 상부 수평방향 층간변위비를 OpenSees에 의한 수치해석시뮬레이션과 진동대실험의 그것과 비교하였다. 본 실험은 가장 복잡한 실시간 하이브리드실험 중의 하나이고, 하드웨어, 알고리즘 그리고 모형에 대한 기술적인 내용을 본 논문에 자세히 설명하였다. 수치해석모형의 개선, 물리적 부분구조 모형 접선강성행렬의 유한요소해석 프로그램에서의 평가 그리고 하중기반 보-요소의 요소상태결정의 연산시간을 줄이기 위한 소프트웨어의 개선이 이루어진다면 실시간 하이브리드실험과 진동대실험결과의 비교는 권장할 만하다. 그리고 "지진과 같은 동적하중하의 복잡한 구조물의 수치해석시뮬레이션"이라는 목적을 위하여 실시간 하이브리드실험은 동적하중에 대한 실험적 검증을 점진적으로 수치해석모형으로 대체하기 위한 저비용-고효율 실험법으로서의 가치를 충분히 가지고 있다고 할 수 있다.

철근콘크리트 보-기둥 접합부 해석모델 (Analytical Model of Beam-Column Joint for Inelastic Behavior Under Various Loading History)

  • 유영찬;서수연;이원호;이리형
    • 콘크리트학회지
    • /
    • 제6권1호
    • /
    • pp.120-130
    • /
    • 1994
  • 본 연구의 목적은 반목하중을 받는 철근콘크리트 부재의 이력거동을 적절히 예측할 수 있는 해석모델을 구축하고 기존 연구자들의 실험결과를 분석하여 부재의 다양한 이력거동을 예측할 수 있는 이력모델을 제안하는데 있다. 이력모델의 구축에는 골조의 동적해석에 정량적으로 사용할 수 없는 변수들을 배제함으로써 6개 자유도를 갖는 평면 프레임의 비선형 동적해석에 적용가능한 해석요소를 개발하였다. 해석모델은 소성힌지부를 단일 스프링으로 치환한 분리선형요소 모델을 사용하였으며 부재의 길이방향 철근 배근상태에 따라 소성힌지부의 이동을 고려할 수 있도록 하였다. 기존 연구자들의 실험결과를 비교$\cdot$분석한 결과, 반복하중에 의해 나타나는 부재의 강성저하는 기본 핀칭계수, 부재의 연성비 및 항복강도비의 함수로 적절히 예측할 수 있었으며, 부재의 강도저하에 대해서는 횡보강근 간격비, 단면형상비를 고려한 새로운 개념의 강도감소계수를 제안하였다. 본 해석모델에 의해 계산한 부재의 에너지 소산능력을 실험결과와 약 10%~20% 내외의 오차를 나타냄으로써 본 해석결과의 타당성을 입증하고 있다. 따라서 본 연구에서 제안하는 해석모델은 반복하중을 받는 철근콘크리트 보-기둥 접합부의 이력거동 해석에 사용 가능하다고 판단된다.

전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구 (An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections)

  • 오경현;서성연;김성용;양영성;김규석
    • 한국강구조학회 논문집
    • /
    • 제17권5호통권78호
    • /
    • pp.569-580
    • /
    • 2005
  • 기존 강구조 모멘트연성골조시스템의 기둥-보 접합부는 노스리지 지진과 고베 지진시 충분한 내진성능을 발휘하지 못하고 접합부에서 취성파괴가 발생하였다. 본 논문은 기존 접합부의 형상을 변화하여 H형강보 웨브의 고장력볼트 전단접합과 H형 플랜지의 리브보강 유무를 변수로 한 실대형 실험을 실시하였다. 실험목적은 보웨브의 2면전단접합으로 고장력 볼트수 감소와 시공성 향상을 기대하며, 리브플레이트 보강을 통해 내진성능을 향상시키고자 한다. H형강 보웨브의 2면전단접합과 리브플레이트로 보강한 접합부 실험결과, 기존 접합부보다 초기강성, 에너지 소산능력 및 소성회전능력이 높게 나타났으며, 내력상승률 및 변형능력은 전단탭의 위치로 인해 인장측과 압축측이 다소 차이를 보이고 있으나 전체적으로 우수한 내진성능을 나타냈다. 그리고 모든 시험체가 층간변위비 4%, 총소성회능력 약 0.029rad이상 및 접합부 최대내력이 원단면보 전소성모멘트의 약 130% 이상을 상회하여 중급모멘트연성골조이상의 설계가 가능하리라 사료된다.

석조유구(石造遺構)를 통한 한국(韓國) 고대건축(古代建築)에 관한 연구(硏究) -삼국시대와 통일신라시대를 중심으로- (A Study on the Ancient Architecture in view of the Stone Remains (focused on the 3 Kingdom Period and Unificated Shilla Period))

  • 천득염;박지민
    • 건축역사연구
    • /
    • 제8권3호
    • /
    • pp.23-38
    • /
    • 1999
  • The purpose of this study is to analogize the appearance of Korean Ancient Architecture in view of the Stone Remains from 3 Kingdom Period to Unificated Shilla Period. But in these period, there is no building remains but some stupas and fine arts. Especially, there are many architectural appearance and revealing signature in these Historical Stone remains. Architectural elements which are analogized by stone remains what has value as historical materials by preservation of original form from 3 Kingdom Preiod to Unificated Shilla Period are as follows : 1) Platform, the representative characteristic of Korean traditional architecture, was frame structure and accumulate structure. And circular or square footing stood a same shape column on it is put on the platform. 2) In the case of column, there used entasis column and inclined column and circular chamfer technique was applied on the top side of it. Upper side of column, capital and head pentrating tie that small bearing block was put on the center of it was joined. And longitu야nal rest(長舌) supported a cross beam. Capital and small bearing block had no bottom heel, and heel side was curved and straight. Centered bracket structure was often used, and multi bracket structure is not used yet. Inward incline technique was used. 3) Inward opening pair door which had lintel, threshold, doorjamb was usually used, Fixing stone was used for structural safety, and circular handle and lock was used for decoration. Handrail was used on the edge of wooden floor for decorative effect and safety. 4) Square rafter and circular rafter were used in the same period and so did flying rafter. Double eaves and single eave were used in the same period but, single eave was usually used. In this period, square rafter was usually used. This would be studied more by comparing with Japanese wooden architecture. 5) Hipped roof was used and half-hipped roof was not used yet. In front of th hip, there are small sculpture called Jap-Sang(雜像), and windbell was hang on the end of the hip rafter. Concave roof tile, convex roof tile, round eaver tile, decorative tile at end of roof ridge were used. Lotus style was well used on the face of roof tile for decoration. From the results of this study, wooden architecture of Unificated Shilla period was simple compare to Koryo dynasty and Chosun dynasty but, it had some brilliant character. It was hard work that analogized the form of non-existent wood architecture of Ancient Korean period by restricted stone remains. But, in addition to the results of this study and research of old documentations, more study should be go on.

  • PDF

Risk evaluation of steel frames with welded connections under earthquake

  • Song, Jianlin;Ellingwood, Bruce R.
    • Structural Engineering and Mechanics
    • /
    • 제11권6호
    • /
    • pp.663-672
    • /
    • 2001
  • Numerous failures in welded connections in steel moment-resisting building frames (SMRF) were observed when buildings were inspected after the 1994 Northridge Earthquake. These observations raised concerns about the effectiveness of such frames for resisting strong earthquake ground motions. The behavior of SMRFs during an earthquake must be assessed using nonlinear dynamic analysis, and such assessments must permit the deterioration in connection strength to capture the behavior of the frame. The uncertainties that underlie both structural and dynamic loading also need to be included in the analysis process. This paper describes the analysis of one of approximately 200 SMRFs that suffered damage to its welded beam-to-column connections from the Northridge Earthquake is evaluated. Nonlinear static and dynamic analysis of this SMRF in the time domain is performed using ground motions representing the Northridge Earthquake. Subsequently, a detailed uncertainty analysis is conducted for the building using an ensemble of earthquake ground motions. Probability distributions for deformation-related limit states, described in terms of maximum roof displacement or interstory drift, are constructed. Building fragilities that are useful for condition assessment of damaged building structures and for performance-based design are developed from these distributions.

Design and analysis of non-linear space frames with semi-rigid connections

  • Sagiroglu, Merve;Aydin, Abdulkadir Cuneyt
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1405-1421
    • /
    • 2015
  • Semi-rigid connections are the actual behavior of beam-to-column connections in steel frames. However, the behavior of semi-rigid connections is not taken into account for the simplicity in the conventional analysis and design of steel frames. A computer-based analysis and design has been studied for the three-dimensional steel frames with semi-rigid connections. The nonlinear analysis which includes the effects of the flexibility of connections is used for this study. It is designed according to the buckling and combined stress constraints under the present loading after the joint deformations and the member end forces of the space frame are determined by the stiffness matrix method. The semi-rigid connection type is limited to the top and bottom angles with a double web angle connection. The Frye-Morris polynomial model is used to describe the non-linear behavior of semi-rigid connections. Various design examples are presented to demonstrate the efficiency of the method. The results of design and analysis of unbraced semi-rigid frames are compared to the results of unbraced rigid frames under the same design requirements.

전단변형(剪斷變形)을 고려(考慮)한 평면(平面)뼈대 구조물(構造物)의 기하적(幾何的)인 비선형(非線形) 해석(解析) (Geometric Non-linear Analysis of the Plane Frame Structures including Shear Deformation Effect)

  • 김문영;장승필
    • 대한토목학회논문집
    • /
    • 제10권1호
    • /
    • pp.27-36
    • /
    • 1990
  • 본(本) 논문(論文)에서는 전단변형(剪斷變形) 효과(效果)가 고려되는 평면(平面)뼈대 구조물(構造物)의 기하적(幾何的)인 비선형(非線形) 해석(解析)을 수행하기 위한 두 가지 방법 즉, 유한분절법(有限分節法)과 유한요소법(有限要素法)을 제시한다. 유한분절법(有限分節法)의 경우에는 평형방정식(平衡方程式)을 직접(直接) 적분(積分)하므로써 엄밀(嚴密)한 접선강도(接線剛度) 매트릭스가 유되되는 반면에 유한요소법(有限要素法)의 경우에는 전단변형(剪斷變形)을 고려하는 Hermitian 다항식(多項式)을 형상함수(形狀函數)로 사용하므로써 탄성(彈性) 및 기하적(幾何的)인 강도(剛度)매트릭스가 산정된다. 선택된 예제(例題)들을 해석(解析)한 결과들과 다른 문헌(文獻)의 결과들을 비교, 검토하므로써 본(本) 논문(論文)에서 제시된 이론(理論)의 정당성(正當性)을 입증(立證)한다.

  • PDF

Influence of openings of infill wall on seismic vulnerability of existing RC structures

  • Dilmac, Hakan
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.211-227
    • /
    • 2020
  • The contribution of infill wall is generally not considered in the structural analysis of reinforced concrete (RC) structures due to the lack of knowledge of the complex behavior of the infilled frame of RC structures. However, one of the significant factors affecting structural behavior and earthquake performance of RC structures is the infill wall. Considering structural and architectural features of RC structures, any infill wall may have openings with different amounts and aspect ratios. In the present study, the influence of infill walls with different opening rates on the structural behaviors and earthquake performance of existing RC structures were evaluated. Therefore, the change in the opening ratio in the infill wall has been investigated for monitoring the change in structural behavior and performance of the RC structures. The earthquake performance levels of existing RC structures with different structural properties were determined by detecting the damage levels of load-carrying components. The results of the analyzes indicate that the infill wall can completely change the distribution of column and beam damage level. It was observed that the openings in the walls had serious impact on the parameters affecting the behavior and earthquake performance of the RC structures. The infill walls have a beneficial effect on the earthquake performance of RC structures, provided they are placed regularly and there are appropriate openings rate throughout the RC structures and they do not cause structural irregularities.

System and member reliability of steel frames

  • Zhou, W.;Hong, H.P.
    • Steel and Composite Structures
    • /
    • 제4권6호
    • /
    • pp.419-435
    • /
    • 2004
  • The safety level of a structural system designed per code specifications can not be inferred directly from the reliability of members due to the load redistribution and nonlinear inelastic structural behavior. Comparison of the system and member reliability, which is scarce in the literature, is likely to indicate any possible inconsistency of design codes in providing safe and economical designs. Such a comparative study is presented in this study for moment resisting two-dimensional steel frames designed per AISC LRFD Specifications. The member reliability is evaluated using the resistance of the beam-column element and the elastic load effects that indirectly accounts for the second-order effects. The system reliability analysis is evaluated based on the collapse load factor obtained from a second-order inelastic analysis. Comparison of the system and member reliability is presented for several steel frames. Results suggest that the failure probability of the system is about one order of magnitude lower than that of the most critically loaded structural member, and that the difference between the system and member reliability depends on the structural configuration, degree of redundancy, and dead to live load ratio. Results also suggest that the system reliability is less sensitive to initial imperfections of the structure than the member reliability. Therefore, the system aspect should be incorporated in future design codes in order to achieve more reliability consistent designs.

Progressive collapse vulnerability in 6-Story RC symmetric and asymmetric buildings under earthquake loads

  • Karimiyan, Somayyeh;Kashan, Ali Husseinzadeh;Karimiyan, Morteza
    • Earthquakes and Structures
    • /
    • 제6권5호
    • /
    • pp.473-494
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.