• 제목/요약/키워드: beam to column connections

검색결과 484건 처리시간 0.029초

T-스티프너 보강 콘크리트충전 각형강관 기둥-H형강 보 접합부의 인장거동 (Tensile Behavior of CFT Column-to-H beam Connections with External T-shaped Stiffeners)

  • 강창훈;신경재;오영석;문태섭
    • 한국강구조학회 논문집
    • /
    • 제14권1호
    • /
    • pp.121-130
    • /
    • 2002
  • This paper presents the tensile behavior of a Concrete-Filled Square Steel Tubular (CFT) column to H-beam welded connections. These connections were externally reinforced with T-shaped stiffeners at the junction of CFT column and beam. The tensile loading tests of eighteen tee-joint connections and finite element analysis using ANSYS were carried out. The main parameters of tests are as follows: 1) the thickness of Square Steel Tubular Column : 6 mm, 9 mm, 2) the strength ratios of tensile strength of horizontal stiffeners to tensile strength of beam flange : 70 %, 100 %, 150 %, 3) the strength ratios of shear strength of vertical stiffeners to tensile strength of beam flange : 80 %, 115 %, 160 %. The results of the tests demonstrate that overall behavior and failure modes of all the specimens are governed mainly by the horizontal stiffeners rather than the vertical stiffeners, and the vertical stiffener played only a role in transferring load introduced from beam to column.

강판보강 콘크리트충전 각형강관 기둥-H형강보 접합부의 거동 (Behavior of Concrete-Filled Square Steel Tubular Column-H Beam Connections with Plates)

  • 유영찬;신경재;오영석;문태섭
    • 한국강구조학회 논문집
    • /
    • 제10권2호통권35호
    • /
    • pp.161-175
    • /
    • 1998
  • 본 연구는 큰크리트충전 각형강관을 이용한 기둥-보 접합부에 있어서 시공성과 충전성을 고려하여 강판으로 보강한 콘크리트충전 각형강관 기둥-H형강보 접합부를 제시하고, 1차적으로 보의 인장플랜지와 충전 각형강관 기둥 접합부와의 인장거동을 실험적으로 관찰한 후, 내진설계 개념을 적용하여 수평 하중을 반복적으로 가할 경우의 접합부 실험을 실시하고 제시한 접합부의 내력 및 변형 특성을 파악한다. 실험결과로부터 항복선 이론을 적용하여 내력을 평가하고 접합부의 내력식을 제안하며, 향후 국내의 콘크리트충전 강관구조 규준 제정에 필요한 기초 자료를 제시하는데 그 목적이 있다.

  • PDF

콘크리트충전 각형강관기둥-보 접합부의 거동에 관한 연구 (Behavior of Beam-to-Concrete Filled Steel Tube Column Rigid Connections)

  • 김철환;이은택
    • 한국강구조학회 논문집
    • /
    • 제10권4호통권37호
    • /
    • pp.741-748
    • /
    • 1998
  • 콘크리트충전 강관기둥-보 강접합부의 역학적 특성을 규명하기 위하여 모델 시험체에 대한 반복가력 실험을 행하였다. 실험변수로는 항복부위, 내부다이어프램의 유공의 크기 및 슬래브 설치 유무이다. 보 항복형 시험체인 경우에는 다이어프램 항복형 시험체에 비하여 충강성이 높고 내력의 저하없이 높은 층간변형을 가지고 있다.

  • PDF

Studies on restoring force model of concrete filled steel tubular laced column to composite box-beam connections

  • Huang, Zhi;Jiang, Li-Zhong;Zhou, Wang-Bao;Chen, Shan
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1217-1238
    • /
    • 2016
  • Mega composite structure systems have been widely used in high rise buildings in China. Compared to other structures, this type of composite structure systems has a larger cross-section with less weight. Concrete filled steel tubular (CFST) laced column to box-beam connections are gaining popularity, in particular for the mega composite structure system in high rise buildings. To enable a better understanding of the destruction characteristics and aseismic performance of these connections, three different connection types of specimens including single-limb bracing, cross bracing and diaphragms for core area of connections were tested under low cyclic and reciprocating loading. Hysteresis curves and skeleton curves were obtained from cyclic loading tests under axial loading. Based on these tested curves, a new trilinear hysteretic restoring force model considering rigidity degradation is proposed for CFST laced column to box-beam connections in a mega composite structure system, including a trilinear skeleton model based on calculation, law of stiffness degradation and hysteresis rules. The trilinear hysteretic restoring force model is compared with the experimental results. The experimental data shows that the new hysteretic restoring force model tallies with the test curves well and can be referenced for elastic-plastic seismic analysis of CFST laced column to composite box-beam connection in a mega composite structure system.

Joint shear strength prediction for reinforced concrete beam-to-column connections

  • Unal, Mehmet;Burak, Burcu
    • Structural Engineering and Mechanics
    • /
    • 제41권3호
    • /
    • pp.421-440
    • /
    • 2012
  • In this analytical study numerous prior experimental studies on reinforced concrete beam-to-column connections subjected to cyclic loading are investigated and a database of geometric properties, material strengths, configuration details and test results of subassemblies is established. Considering previous experimental research and employing statistical correlation method, parameters affecting joint shear capacity are determined. Afterwards, an equation to predict the joint shear strength is formed based on the most influential parameters. The developed equation includes parameters that take into account the effect of eccentricity, column axial load, wide beams and transverse beams on the seismic behavior of the beam-to-column connections, besides the key parameters such as concrete compressive strength, reinforcement yield strength, effective joint width and joint transverse reinforcement ratio.

Rehabilitation of exterior RC beam-column connections using epoxy resin injection and galvanized steel wire mesh

  • Marthong, Comingstarful
    • Earthquakes and Structures
    • /
    • 제16권3호
    • /
    • pp.253-263
    • /
    • 2019
  • The efficacy of a galvanized steel wire mesh (GSWM) as an alternative material for the rehabilitation of RC beam-column connections damaged due to reversed cyclic loading was investigated. The repair mainly uses epoxy resin infused under pressure into the damaged zone and then confined using three types of locally available GSWM mesh. The mesh types used herein are (a) Weave type square mesh with 2mm grid opening (GWSM-1) (b) Twisted wire mesh with hexagonal opening of 15 mm (GSWM-2) and (c) welded wire mesh with square opening of 25 mm (GSWM-3). A reduced scale RC beam-column connection detailed as per ductile detailing codes of Indian Standard was considered for the experimental investigation. The rehabilitated specimens were also subjected to similar cyclic displacement. Important parameters related to seismic capacity such as strength, stiffness degradation, energy dissipation, and ductility were evaluated. The rehabilitated connections exhibited equal or better performance and hence the adopted rehabilitation strategies could be considered as satisfactory. Confinement of damaged region using GSWM-1 significantly enhanced the seismic capacity of the connections.

다이아프램이 없는 콘크리트 충전 원형강관 기둥-H형강 보 접합부의 구조적 거동에 관한 실험적 연구 (Experimental Study on the Structural Behavior of Concrete-Filled Circular Tubular Column to H-Beam connections without Diaphragm)

  • 강현식;문태섭
    • 한국강구조학회 논문집
    • /
    • 제9권1호통권30호
    • /
    • pp.13-22
    • /
    • 1997
  • This paper is concerned with an experimental study on structural behavior of Concrete-Filled Circular Tubular(CFCT) column to H-beam connections. The important parameters are the number of inner reinforced rib and the width of H-beam flange(100, 150, 200mm) with variable column thickness(5.8mm, 9.2mm, 12.5mm) around the joint between CFCT and H-beam. Test results are summarized for the displacement, strength, initial stiffness, failure mode and energy absorption capacity of each specimen. The purpose of this paper is to investigate the initial stiffness and the strength of connections to evaluate the structural behavior of the CFCT column to H-beam connections. From the discussion about the test results, the basic data for non diaphragm connection design would be suggested.

  • PDF

외부다이아프램으로 보강한 콘크리트충전 각형강관 기둥-H형강보 접합부의 거동 (Behavior of Concrete-Filled Square Steel Tubular Column-H Beam Connections with Exterior Diaphragm)

  • 유영찬;이승준;문태섭
    • 한국강구조학회 논문집
    • /
    • 제9권2호통권31호
    • /
    • pp.205-220
    • /
    • 1997
  • 본 연구는 콘크리트충전 각형강관을 이용한 기둥-보 접합부에 있어서 시공성과 충전성을 고려하여 외부다이아프램으로 보강한 콘크리트충전 각형강관 기둥-H형강보 접합부를 제시하고, 1차적으로 보의 인장플랜지와 충전 각형강관 기둥 접합부와의 인장거동을 실험적으로 관찰한 후, 내진설계 개념을 적용하여 수평 하중을 반복적으로 가할 경우의 접합부 실험을 실시하고 제시한 접합부의 내력 및 변형 특성을 파악한다. 실험결과로부터 항복선 이론을 적용하여 내력을 평가하고 접합부의 내력식을 제안하며, 향후 국내의 콘크리트충전 강관구조 규준 제정에 필요한 기초 자료를 제시하는데 그 목적이 있다.

  • PDF

고장력 철근이 적용된 철근콘크리트 보-기둥 접합부 파괴모드에 대한 실험적 연구 (Experimental Study on Seismic Performance of Beam-column Connections with High Strength Reinforcements)

  • 김대훈;박아론;이기학
    • 한국공간구조학회논문집
    • /
    • 제16권2호
    • /
    • pp.61-68
    • /
    • 2016
  • Behavior of RC(Reinforced-concrete) beam-column connections has been subjected to the earthquake loading has been determined by shear and attachment mechanism. However, since the shear and attachment are very fragile for cycle loadings. Through occurring plastic hinges at the beam, the column and the connection should remain elastic condition and the beam should dissipate the energy from the earthquake. This study was investigate on the seismic performance of 6 RC beam - column connections built with the high strength reinforcements (700MPa) based on design and detailing requirements in the ACI 318-05 Provision and KCI-07 appendix II. This is aimed to evaluate the effect of the high-strength reinforcements as used the beam-column connection members. The main comparisons were the seismic performance of the connections affect the seismic performance in terms of strength, stiffness and ductility, joint shear stress-strain. A total of 6 beam-column specimens were built with a 1/2 scale and subjected to the cyclic loadings. Main design considerations were the area of the longitudinal reinforcements of the beam and details of the beam-column joint designed based on the seismic code. Cyclic test results are given and recommendations for the usage of high strength reinforcements for the seismic design is provided.

Experimental study on seismic performance of partial penetration welded steel beam-column connections with different fillet radii

  • Ge, Hanbin;Jia, Liang-Jiu;Kang, Lan;Suzuki, Toshimitsu
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.851-865
    • /
    • 2014
  • Full penetration welded steel moment-resisting frame (SMRF) structures with welded box sections are widely employed in steel bridges, where a large number of steel bridges have been in operation for over fifty years in Japan. Welding defects such as incomplete penetration at the beam-column connections of these existing SMRF steel bridge piers were observed during inspection. Previous experiments conducted by the authors' team indicate that gusset stiffeners (termed fillets in this study) at the beam-web-to-column-web joint of the beam-column connections may play an important role on the seismic performance of the connections. This paper aims to experimentally study the effect of the fillet radius on seismic performance of the connections with large welding defects. Four specimens with different sizes of fillet radii were loaded under quasi-static incremental cyclic loading, where different load-displacement relations and cracking behaviors were observed. The experimental results show that, as the size of the fillet radius increases, the seismic performance of the connections can be greatly improved.