• Title/Summary/Keyword: beam steel bridge

Search Result 222, Processing Time 0.022 seconds

3-Dimensional FE Analysis of Construction Stages of The Cable-stayed Bridge with Steel-box Girder (강박스 사장교의 시공단계를 고려한 3D 상세 유한요소 해석)

  • Lee Tae-Yeol;Kim Young-Hoon;Shin Hyun-Yang;Kim Jae-Kwon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.249-256
    • /
    • 2005
  • Rigorous FE(Finite Element) analyses of the cable-stayed bridge with steel-box girder, the main construction method of which is FCM (Free Cantilever Method), are presented in this paper. The analysis and the checking of design for a derrick crane under several loading conditions are performed using the software MIDAS/Civil and the beam elements are used to model the main structure. Among all the construction stages, special construction stages are chosen and considered to ensure the safety of segments of box girder The stress analysis for lifting of a segment of box girder is performed using the software SAP2000 and the shell elements of which having 6 DOF(Degrees Of Freedom) per nodes are successfully used to model the segment of box girder for the purpose of capturing the detailed behaviors on the folded-plates in the segment. Finally, concluding remarks are given to improve a design of the derrick crane and the segment based on the results from this study.

  • PDF

A Study on Fatigue Crack at Coped Stringers of the Plate Girder Subway-Bridge (플레이트거더 지하철교량 세로보의 피로 균열에 관한 연구)

  • Jo, Jae Byung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.713-724
    • /
    • 2004
  • A fatigue crack found at the coped stringer of the old dismantled Dangsan Subway Bridge was numerically simulated. A model of a single span of the plate girder bridge with its beam elements was created and analyzed in order to obtain the nominal stress history caused by trains. A detailed FEM analysis of the coped stringer was conducted using a shell element model. A fracture mechanical model was used to estimate crack propagation. The stress intensity factors were calculated using the J-Integral method. The simulation with some reasonable assumptions showed that the calculated crack lengths were comparable to those found on the site.

An Evaluation on the Shear Strength of New Type Shear Connectors for a Simple Steel-Concrete Composite Deck (초간편 강합성 바닥판 신형식 전단연결재의 전단내력 평가)

  • Yoon, Ki Yong;Kim, Sang Seup;Han, Deuk Cheon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.519-528
    • /
    • 2008
  • A simple steel-concrete composite deck is developed for preventing the lateral torsional buckling of girders that are under construction and for reducing the term of works using H-shaped rolled beams as bridge girders. A new type of shear connectors is also developed for the composite behavior between a simple steel-concrete composite deck and the rolled beams by the connecting conditions between the deck and the girders. One is a connector bolt that is lengthened and split or tightened with two nuts and the other is an I-shaped rolled beam welded on a steel plate with a number of holes punched through the web. In this study, to estimate the shear strength of those shear connectors the push-out tests are performed and the test results are compared with that of the previous studies and the codes. The result of the push-out tests of the connector bolts showed that the shear performance is similar to that of the stud connector and revealed that the equation for the shear strength in the Korean Specification of Highway Bridge overestimates the shear capacity of the connector bolt whose diameter is larger than 19mm. From the push-out tests of punched I-shaped rolled beams with varying welding amounts, with the small amount of welding, shear capacity is governed by the shear capacity of welding. On the other hand, shear capacity is governed by the size of the punched I-shaped rolled beams, regardless of the amount of welding.

The energy dissipation mechanism of ship and fender system by vessel collision (선박충돌에 의한 선박과 방호공의 에너지 소산 메카니즘)

  • Hong Kwan-Young;Lee Gye-Hee;Ko Jae-Yong;Lee Seong-Lo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.696-703
    • /
    • 2005
  • Recently, the collision problems between a bridge and a navigating ship are frequently issued at the stage of structure design. Even the many study results about vessel to vessel collision are presented, but the collision studies between vessel and bridge structure have been hardly presented. In this study, nonlinear dynamic analysis of vessel and fender system carry out using ABAQUS/Explicit commercial program with consideration of some parameters, such as bow structure we composed to shell element also ship's hull is modeling to beam element. Also, buoyancy effect is considered as spring element. The two types of fender systems was comparable with both collision analysis about steel materials fender system and rubber fender system On the purpose of study is analyzed the plasticity dissipated energy of vessel and fender system. We blow characteristic that kinetic energy is disappeared by plastic large deformation in case of collision. Also, We considered dissipated kinetic energy considering friction effect.

  • PDF

Determination of the Accurate Effective Length for Buckling Design of Cable-Supported Bridges (케이블지지교량의 좌굴설계를 위한 유효좌굴길이 산정)

  • Jin, Man Sik;Kyoung, Yong Soo;Lee, Myung Jae;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.355-363
    • /
    • 2004
  • In order to obtain the effective length factor of beam-column members of plane frames, this paper extensively used an alignment chart approach, based on the nomograph given in LRFD-AISC specification commentaries. However, it should be noted that various simplifications and assumptions were introduced in constructing the alignment chart. To overcome the practical limitations of the alignment chart, this paper proposes a simple but accurate procedure that determined the effective buckling length for stability design of main members of cable-supported bridges. This method requires the full system buckling analysis. The numerical examples showing the suitability of the present scheme are discussed and some conclusions are drawn.

Experimental Investigation of Large-Span Girder with Under-Tension System (언더텐션 시스템이 적용된 축소 실험체의 구조적 성능에 대한 연구)

  • Kim, Young-Min;Park, Dae-Ha;Lee, Ki-Hak;Lee, Jae-Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.345-354
    • /
    • 2010
  • This paper presents an experimental investigation of the structural performance of a large-span girder bridge with an under-tension system. Typical long-span structures with beam and girder members have greater structural member depths and sizes to carry the moment and deflection. An under-tension system can be an effective structural system, as it allows the cables to resist some portions of the vertical loadings and deflections. To evaluate the serviceability and ultimate strength of the under-tension system, two $10m{\times}2.4m$ experimental under-tension systems were built and tested. One was developed with an H-beam section, and the other was made with a PF500 section that had the advantages of fast construction and lower construction cost. In the test, the maximum deflections at the mid-point of both beams were effectively reduced using under-tension systems. Also, the increased tension forces in the cable reduced the deflections. The PF500 members, which had a new shape and were developed using the module systems, performed better than the typical H-beam sections in terms of the deflections and ultimate strength.

A Damage Assessment Technique for Bridges Using Conjugate Beam Theory (공액보 방법을 이용한 교량 손상도 평가기법)

  • Choi, Il Yoon;Choi, Eunsoo;Lee, Jun Suk;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.603-610
    • /
    • 2003
  • A damage identification technique using static displacement data is developed to asses s the structural integrity of bridge structures.As such, the relationship between static displacement and stiffness is derived, and the optimization technique utilized.Comparisons with numerical and experimental tests are performed to investigate the practical applicability of the proposed method.Various damage scenarios are considered by varying damage-width as well as damage-degree. The influence of noise in identifying the damage is also numerically investigated.Finally, the applicability and limitation of the proposed method are discussed.

Bridge Superstructures Design by Special Othotropic Plate Theory (특별직교 이방성 판 이론에 의한 교랑 상부구조 설계)

  • Kim, Dun-Hyun;Han, Bong-Koo;Lim, Tae-Ho;Oh, Sang-Sub
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.171-174
    • /
    • 2003
  • The Special orthotropic plate theory is used for analysis of panels made of steel girders and cross-beams, and made of reinforced concrete. The cross-sections of girders and cross-beams are WF types. The result is compared with that of the beam theory. According to the numerical examination given in this paper, the result by the plate theory is 2.43 times stiffer than that of beam theory, The result for the concrete slab in given for the practicing engineers.

  • PDF

Evaluation of Design Compatibility for Lightweight Soundproof Tunnels using Pipe Truss Beams (파이프 트러스 빔을 이용한 경량방음터널의 설계적합성 평가)

  • Ahn, Dong-Wook;Choi, Sung-Joon;Noh, Myung-Hyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • In this paper, the structural characteristics of a lightweight soundproof tunnel to reduce the dead load imposed on the bridge are investigated. Subsequently, the design procedure of soundproof tunnel structures is reviewed and a design practice for the lightweight soundproof tunnel is carried out according to the reviewed procedure. Next, design compatibility for the lightweight soundproof tunnel is verified through a detailed finite element analysis. The result for evaluation of design compatibility shows that the lightweight soundproof tunnel has structural safety in structural members, welding zones and foundation parts. It is also confirmed that serviceability and buckling safety is excellent.

Buckling analysis of complex structures with refined model built of frame and shell finite elements

  • Hajdo, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.9 no.1
    • /
    • pp.29-46
    • /
    • 2020
  • In this paper we deal with stability problems of any complex structure that can be modeled by beam and shell finite elements. We use for illustration the steel plate girders, which are used in bridge construction, and in industrial halls or building construction. Long spans, slender cross sections exposed to heavy loads, are all critical design points engineers must take into account. Knowing the critical load that will cause lateral torsional buckling of the girder, or load that can lead to web buckling, as an important scenario to consider in a design process.Many of such problem, including lateral torsional buckling with influence of lateral supports and their spacing on critical load can be solved by the proposed method. An illustrative study of web buckling also includes effects of position and spacing of transverse and longitudinal web stiffeners, where stiffeners can be modelled optionally using shell or frame elements.