• Title/Summary/Keyword: beam on elastic foundation

Search Result 230, Processing Time 0.027 seconds

An exact solution for buckling analysis of embedded piezo-electro-magnetically actuated nanoscale beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.4 no.2
    • /
    • pp.65-84
    • /
    • 2016
  • This paper investigates the buckling behavior of shear deformable piezoelectric (FGP) nanoscale beams made of functionally graded (FG) materials embedded in Winkler-Pasternak elastic medium and subjected to an electro-magnetic field. Magneto-electro-elastic (MEE) properties of piezoelectric nanobeam are supposed to be graded continuously in the thickness direction based on power-law model. To consider the small size effects, Eringen's nonlocal elasticity theory is adopted. Employing Hamilton's principle, the nonlocal governing equations of the embedded piezoelectric nanobeams are obtained. A Navier-type analytical solution is applied to anticipate the accurate buckling response of the FGP nanobeams subjected to electro-magnetic fields. To demonstrate the influences of various parameters such as, magnetic potential, external electric voltage, power-law index, nonlocal parameter, elastic foundation and slenderness ratio on the critical buckling loads of the size-dependent MEE-FG nanobeams, several numerical results are provided. Due to the shortage of same results in the literature, it is expected that the results of the present study will be instrumental for design of size-dependent MEE-FG nanobeams.

Natural Frequency of Building Slabs Supported by Elastic Beams (탄성보에 의하여 지지된 복합재료 상판의 고유 진동수)

  • 김덕현;심도식
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.227-235
    • /
    • 1998
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross-sections and with arbitrary boundary conditions was developed and reported by D. H. Kim in 1974. This method has been developed for two-dimensional problems including the laminated composite plates and was proved to be very effective for the plates with arbitrary boundary conditions and irregular sections. In this paper, the result of application of this method to the building slabs with passive and active control devices is presented. Finite difference method is used to obtain the deflection influence surfaces needed for this vibration analysis in this paper. The influence of the modulus of the foundation on the natural frequency is thoroughly studied.

  • PDF

On bending characteristics of smart magneto-electro-piezoelectric nanobeams system

  • Shariati, Ali;Ebrahimi, Farzad;Karimiasl, Mahsa;Selvamani, Rajendran;Toghroli, Ali
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.183-191
    • /
    • 2020
  • The content of this study focuses on bending of flexoelectric Magneto-Electro-Elastic (MEE) nanobeams inserted within the foundation of Winkler-Pasternak according to nonlocal elasticity theory. Applying Hamilton's principle, the nonlocal nanobeams' governing equations in the framework higher order refined beam theory are attained and resolved through adapting an analytical solution. A parametric research is demonstrated for studying the effects that magneto-electro-mechanical loadings, the nonlocal parameter, flexoelectric, as well as the aspect ratio all have on the deflection properties of nanobeams. A discovery lead to beam geometrical parameters, the boundary conditions, flexoelectricity and nonlocal parameter partake substantial effects on nanoscale beams' dimensionless deflection.

Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Selvamani, Rajendran
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.203-214
    • /
    • 2020
  • This paper investigated bending of magneto-electro-elastic (MEE) nanobeams under hygro-thermal loading embedded in Winkler-Pasternak foundation based on nonlocal elasticity theory. The governing equations of nonlocal nanobeams in the framework parabolic third order beam theory are obtained using Hamilton's principle and solved implementing an analytical solution. A parametric study is presented to examine the effect of the nonlocal parameter, hygro-thermal-loadings, magneto-electro-mechanical loadings and aspect ratio on the deflection characteristics of nanobeams. It is found that boundary conditions, nonlocal parameter and beam geometrical parameters have significant effects on dimensionless deflection of nanoscale beams.

Effect of exercise on the stability of protein tissues

  • Liu, Weixiao;Liu, Yaorong
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.487-497
    • /
    • 2022
  • This study investigates the stability of protein tissues regarding the vibration analysis based on the classical beam theory coupled with the nonlocal elasticity theory concerning the exercise impact. As reported in the previous research, four different types of protein tissues are supposed, and the influence of sports training is investigated. The protein tissues are made of protein fibers surrounded by an elastic foundation. The exercise enhances the muscle area and plays an essential role in the stability and strength of protein and muscle tissues. The results are examined in detail to examine the impact of different parameters on the stability of nano protein fibers.

Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions

  • Lei-Lei Gan;Gui-Lin She
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.541-551
    • /
    • 2023
  • Snap-buckling is one of the main failure modes of structures, because it will lead to the reduction of structural bearing capacity, durability loss and even structural damage. Boundary condition plays an important role in the research of engineering mechanics. Further discussion on the boundary conditions problems will help to analyze the dynamic and static behavior of structures more accurately. Therefore, in order to understand the dynamic and static behavior of curved beams more comprehensively, this paper mainly studies the nonlinear snap-through buckling and forced vibration characteristics of functionally graded graphene reinforced composites (FG-GPLRCs) curved beams with two different boundary conditions (including clamped-hinged and hinged-hinged) using Euler-Bernoulli beam theory (E-BBT). In addition, the effects of the curved beam radius, the GLPs distributions, number of GLPs layers, the mass fraction of GLPs and elastic foundation parameters on the nonlinear snap-through buckling and forced vibration behavior are discussed respectively.

Static analysis of nonlinear FG-CNT reinforced nano-composite beam resting on Winkler/Pasternak foundation

  • Mostefa Sekkak;Rachid Zerrouki;Mohamed Zidour;Abdelouahed Tounsi;Mohamed Bourada;Mahmoud M Selim;Hosam A. Saad
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.509-519
    • /
    • 2024
  • In this study, the static analysis of carbon nanotube-reinforced composites (CNTRC) beams resting on a Winkler-Pasternak elastic foundation is presented. The developed theories account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. To study the effect of carbon nanotubes distribution in functionally graded (FG-CNT), we introduce in the equation of CNT volume fraction a new exponent equation. The SWCNTs are assumed to be aligned and distributed in the polymeric matrix with different patterns of reinforcement. The rule of mixture is used to describe the material properties of the CNTRC beams. The governing equations were derived by employing Hamilton's principle. The models presented in this work are numerically provided to verify the accuracy of the present theory. The analytical solutions are presented, and the obtained results are compared with the existing solutions to verify the validity of the developed theories. Many parameters are investigated, such as the Pasternak shear modulus parameter, the Winkler modulus parameter, the volume fraction, and the order of the exponent in the volume fraction equation. New results obtained from bending and stresses are presented and discussed in detail. From the obtained results, it became clear the influence of the exponential CNTs distribution and Winkler-Pasternak model improved the mechanical properties of the CNTRC beams.

Structual Stability Analysis According to the Lumped Mass of High Speed Vehicles in Underwater (집중질량 변화에 따른 수중 고속 운동체의 구조 안정성 해석)

  • Oh, Kyung-Won;Sur, Joo-No;Cho, Byung-Gu;Ryu, Si-Ung;Kong, Gong-Duk
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.54-59
    • /
    • 2009
  • In this paper, the effect of the position and size of a lumped mass on the structural stability of a high speed underwater vehicle is presented. For simplicity, a real vehicle was modeled as a follower force subjected beam that was resting on an elastic foundation, and the lumped mass effect was simplified as an elastic intermediate support. The stability of the simplified model was numerically analyzed based on the Finite element method (FEM). This numerical simulation revealed that flutter type instability or divergence type instability occurs, depending on the position and stiffness of the elastic intermediate support, which implies that the instability of the real model is affected by the position and size of the lumped mass.

Improved Method Evaluating the Stiffness Matrices of Thin-walled Beam on Elastic Foundations (탄성지반위에 놓인 박벽보의 강성행렬산정을 위한 개선된 해석기법)

  • Kim, Nam-Il;Jung, Sung-Yeop;Lee, Jun-Seok;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.113-125
    • /
    • 2007
  • Improved numerical method to obtain the exact stiffness matrices is newly proposed to perform the spatially coupled elastic and stability analyses of non-symmetric and open/closed thin-walled beam on elastic foundation. This method overcomes drawbacks of the previous method to evaluate the exact stiffness matrix for the spatially coupled stability analysis of thin-walled beam-column This numerical technique is accomplished via a generalized eigenproblem associated with 14 displacement parameters by transforming equilibrium equations to a set of first order simultaneous ordinary differential equations. Next polynomial expressions as trial solutions are assumed for displacement parameters corresponding to zero eigenvalues and the eigenmodes containing undetermined parameters equal to the number of zero eigenvalues are determined by invoking the identity condition. And then the exact displacement functions are constructed by combining eigensolutions and polynomial solutions corresponding to non-zero and zero eigenvalues, respectively. Consequently an exact stiffness matrix is evaluated by applying the member force-deformation relationships to these displacement functions. In order to illustrate the accuracy and the practical usefulness of this study, the numerical solutions are compared with results obtained from the thin-walled beam and shell elements.

Dynamic analysis of semi-rigidly connected and partially embedded piles via the method of reverberation-ray matrix

  • Yan, Wei;Chen, W.Q.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.269-289
    • /
    • 2012
  • Free vibration and dynamic responses of piles semi-rigidly connected with the superstructures are investigated. Timoshenko beam theory is employed to characterize the pile partially embedded in a two-parameter elastic foundation. The formulations for the method of reverberation-ray matrix (MRRM) are then derived to investigate the dynamics of the pile with surface cracks, which are modeled as massless rotational springs. Comparison with existent numerical and experimental results indicates the proposed method is very effective and accurate for dynamic analysis, especially in the high frequency range. Finally, the effects of some physical parameters on the natural frequencies, frequency responses and transient responses of the piles are studied.