Browse > Article
http://dx.doi.org/10.12989/anr.2020.9.3.183

On bending characteristics of smart magneto-electro-piezoelectric nanobeams system  

Shariati, Ali (Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University)
Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Karimiasl, Mahsa (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Selvamani, Rajendran (Department of Mathematics, Karunya University)
Toghroli, Ali (Institute of Research and Development, Duy Tan University)
Publication Information
Advances in nano research / v.9, no.3, 2020 , pp. 183-191 More about this Journal
Abstract
The content of this study focuses on bending of flexoelectric Magneto-Electro-Elastic (MEE) nanobeams inserted within the foundation of Winkler-Pasternak according to nonlocal elasticity theory. Applying Hamilton's principle, the nonlocal nanobeams' governing equations in the framework higher order refined beam theory are attained and resolved through adapting an analytical solution. A parametric research is demonstrated for studying the effects that magneto-electro-mechanical loadings, the nonlocal parameter, flexoelectric, as well as the aspect ratio all have on the deflection properties of nanobeams. A discovery lead to beam geometrical parameters, the boundary conditions, flexoelectricity and nonlocal parameter partake substantial effects on nanoscale beams' dimensionless deflection.
Keywords
piezoelectric nanobeam; bending; flexoelectric; nonlocal elasticity theory; magneto-electric;
Citations & Related Records
Times Cited By KSCI : 32  (Citation Analysis)
연도 인용수 순위
1 Arefi, M. and Zenkour, A.M. (2016), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment", J. Sandw. Struct. Mater., 18(5), 624-651. https://doi.org/10.1177/1099636216652581.   DOI
2 Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., Int. J., 5(4), 393-414. https://doi.org/10.12989/anr.2017.5.4.393.   DOI
3 Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029.   DOI
4 Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147.
5 Castrucci, P. (2014), "Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices", Adv. Nano Res., Int. J., 2(1), 23-56. https://doi.org/10.12989/anr.2014.2.1.023.   DOI
6 Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A. A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., Int. J., 3(4), 193-206. https://doi.org/10.12989/anr.2015.3.4.193.   DOI
7 Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.   DOI
8 Daie, M., Jalali, A., Suhatril, M., Shariati, M., Arabnejad Khanouki, M.M., Shariati, A. and Kazemi Arbat, P. (2011), "A new finite element investigation on pre-bent steel strips as damper for vibration control", Int. J. Phys. Sci., 6(36), 8044-8050. https://doi.org/10.5897/IJPS11.1585.
9 Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., Int. J., 65(3), 335-342. http://dx.doi.org/10.12989/sem.2018.65.3.335.
10 Ehyaei, J. and Akbarizadeh, M.R. (2017), "Vibration analysis of micro composite thin beam based on modified couple stress", Struct. Eng. Mech., Int. J., 64(4), 403-411. https://doi.org/10.12989/sem.2017.64.4.403.
11 Elmerabet, A.H., Heireche, H., Tounsi, A. and Semmah, A. (2017), "Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model", Adv. Nano Res., Int. J., 5(1), 1-12. https://doi.org/10.12989/anr.2017.5.1.001.
12 Eltaher, M., Emam, S.A. and Mahmoud, F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.orgdoi.org/10.1016/0020-7225(72)90070-5.   DOI
13 Eringen, A.C. (1968), Mechanics of Generalized Continua, Springer, Berlin, Germany.
14 Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X.   DOI
15 Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, New York, USA.
16 Eringen, A.C. (2006), "Nonlocal continuum mechanics based on distributions", Int. J. Eng. Sci., 44(3-4), 141-147. https://doi.orgdoi,10.1016/j.ijengsci.2005.11.002.   DOI
17 Ghorbanpour Arani, A. and Zamani, M. (2019), "Investigation of electric field effect on size-dependent bending analysis of functionally graded porous shear and normal deformable sandwich nanoplate on silica aerogel foundation", J. Sandw. Struct. Mater., 21(8), 2700-2734. https://doi.org/10.1177/1099636217721405.   DOI
18 Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013c), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., Int. J., 46(6), 853-868. https://doi.org/10.12989/sem.2013.46.6.853.   DOI
19 Mohammadhassani, M., Nezamabadi-Pour, H., Jameel, M. and Garmasiri, K. (2013a), "Applications of the ANFIS and LR in the prediction of strain in tie section of concrete deep beams", Comput. Concrete., Int. J., 12(3), 243-259. https://doi.org/10.12989/cac.2013.12.3.243.   DOI
20 Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M., Jameel, M., Hakim, S. and Zargar, M. (2013b), "Application of the ANFIS model in deflection prediction of concrete deep beam", Struct. Eng. Mech., Int. J., 45(3), 323-336. https://doi.org/10.12989/sem.2013.45.3.323.   DOI
21 Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
22 Hakim, S.J.S., Noorzaei, J., Jaafar, M., Jameel, M. and Mohammadhassani, M. (2011), "Application of artificial neural networks to predict compressive strength of high strength concrete", Int. J. Phys. Sci., 6(5), 975-981. https://doi.org/10.5897/IJPS11.023.
23 Kadari, B., Bessaim, A., Tounsi, A., Heireche, H., Bousahla, A.A. and Houari, M.S.A. (2018), "Buckling analysis of orthotropic nanoscale plates resting on elastic foundations", J. Nano Res., 52, 42-56. https://doi.org/10.4028/www.scientific.net/JNanoR.55.42.
24 Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech., Int. J., 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617.   DOI
25 Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory", Acta Mech. Sin., 30(4), 516-525. https://doi.org/doi.org/10.1007/s10409-014-0072-3.   DOI
26 Kheroubi, B., Benzair, A., Tounsi, A. and Semmah, A. (2016), "A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams", Adv. Nano Res., Int. J., 4(4), 251-264. https://doi.org/10.12989/anr.2016.4.4.251.
27 Khorami, M., Khorami, M., Motahar, H., Alvansazyazdi, M., Shariati, M., Jalali, A. and Tahir, M. (2017), "Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis", Struct. Eng. Mech., Int. J., 63(2), 259-268. https://doi.org/10.12989/sem.2017.63.2.259.
28 Mohammadhassani, M., Suhatril, M., Shariati, M. and Ghanbari, F. (2014c), "Ductility and strength assessment of HSC beams with varying of tensile reinforcement ratios", Struct. Eng. Mech., Int. J., 48(6), 833-848. https://doi.org/10.12989/sem.2013.48.6.833.
29 Mohammadhassani, M., Akib, S., Shariati, M., Suhatril, M. and Arabnejad Khanouki, M.M. (2014a), "An experimental study on the failure modes of high strength concrete beams with particular references to variation of the tensile reinforcement ratio", Eng. Fail. Anal., 41, 73-80. https://doi.org/10.1016/j.engfailanal.2013.08.014.   DOI
30 Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014b), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., Int. J., 14(5), 785-809. https://doi.org/10.12989/sss.2014.14.5.785.   DOI
31 Mohammadhassani, M., Saleh, A.M.D., Suhatril, M. and Safa, M. (2015), "Fuzzy modelling approach for shear strength prediction of RC deep beams", Smart Struct. Syst., Int. J., 16(3), 497-519. https://doi.org/10.12989/sss.2015.16.3.497.   DOI
32 Shahabi, S., Sulong, N., Shariati, M., Mohammadhassani, M. and Shah, S. (2016), "Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire", Steel Compos. Struct., Int. J., 20(3), 651-669. https://doi.org/10.12989/scs.2016.20.3.651.   DOI
33 Mohammadhassani, M., Jumaat, M.Z. and Jameel, M. (2012), "Experimental investigation to compare the modulus of rupture in high strength self compacting concrete deep beams and high strength concrete normal beams", Constr. Build. Mater., 30, 265-273. https://doi.org/10.1016/j.conbuildmat.2011.12.004.   DOI
34 Murmu, T. and Pradhan, S. (2009), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Physica E Low Dimens. Syst. Nanostruct., 41(7), 1232-1239. https://doi.org/doi.org/10.1016/j.physe.2009.02.004.   DOI
35 Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nano-technology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.   DOI
36 Prashanthi, K., Shaibani, P., Sohrabi, A., Natarajan, T. and Thundat, T. (2012), "Nanoscale magnetoelectric coupling in multiferroic BiFeO3 nanowires", Phys. Status Solidi Rapid Res. Lett., 6(6), 244-246. https://doi.org/10.1002/pssr.201206135.   DOI
37 Ramirez, F., Heyliger, P.R. and Pan, E. (2006), "Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates", Mech. Adv. Mater. Struct., 13(3), 249-266. https://doi.org/10.1080/15376490600582750.   DOI
38 Roque, C., Ferreira, A. and Reddy, J. (2011), "Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method", Int. J. Eng. Sci., 49(9), 976-984. https://doi.org/10.1016/j.ijengsci.2011.05.010.   DOI
39 Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non-local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
40 Shariati, A. (2014), "Behaviour of c-shaped angle shear connectors in high strength concrete", M.Sc. Dissertation, Universiti Malaya, Kuala Lumpur, Malaysia.
41 Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.   DOI
42 Shariati, M., Mahmoudi Azar, S., Arjomand, M.A., Tehrani, H.S., Daei, M. and Safa, M. (2019), "Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils", Geomech. Eng., Int. J., 19(6), 473-484. https://doi.org/10.12989/gae.2020.19.6.473.
43 Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020a), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707.   DOI
44 Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020b), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.   DOI
45 Shariati, M., Azar, S.M., Arjomand, M.A., Tehrani, H.S., Daei, M. and Safa, M. (2020c), "Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load", Geomech. Eng., Int. J., 20(2), 87-101. https://doi.org/10.12989/gae.2020.20.2.087.
46 Simsek, M. and Yurtcu, H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory". Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.   DOI
47 Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., Int. J., 17(5), 623-639. http://dx.doi.org/10.12989/scs.2014.17.5.623.   DOI
48 Tounsi, A., Benguediab, S., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001.   DOI
49 Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.orgdoi.org/10.1038/35102721.   DOI
50 Van den Boomgaard, J., Terrell, D., Born, R. and Giller, H. (1974), "An in situ grown eutectic magnetoelectric composite material", J. Mater. Sci., 9(10), 1705-1709. https://doi.orgdoi.org/10.1007/BF00540770.   DOI
51 Wang, C., Kitipornchai, S., Lim, C. and Eisenberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", J. Eng. Mech., 134(6), 475-481. https://doi.orgdoi.org/10.1061/(ASCE)0733-9399(2008)134:6(475).   DOI
52 Yang, J., Ke, L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E Low Dimens. Syst. Nanostruct., 42(5), 1727-1735. https://doi.org10.1016/j.physe.2010.01.035.   DOI
53 Youcef, D.O., Kaci, A., Houari, M.S A., Tounsi, A., Benzair, A. and Heireche, H. (2015), "On the bending and stability of nanowire using various HSDTs", Adv. Nano Res., Int. J., 3(4), 177-191. https://doi.org/10.12989/anr.2015.3.4.177.   DOI
54 Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org10.12989/sem.2015.54.4.693.   DOI
55 Zenkour, A.M. (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak", Adv. Nano Res., Int. J., 4(4), 309-326. https://doi.org/10.12989/anr.2016.4.4.309.   DOI
56 Zheng, H., Wang, J., Lofland, S., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S., Ogale, S. and Bai, F. (2004), "Multiferroic batio3-cofe2o4 nanostructures", Science, 303(5658), 661-663. https://doi.org10.1126/science.1094207.   DOI
57 Arefi, M. (2019), "Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory", Struct. Eng. Mech., Int. J., 69(2), 145-153. https://doi.org/10.12989/sem.2019.69.2.145.
58 Aghakhani, M., Suhatril, M., Mohammadhassani, M., Daie, M. and Toghroli, A. (2015), "A simple modification of homotopy perturbation method for the solution of Blasius equation in semi-infinite domains", Math. Probl. Eng., 2015, 671527. http://dx.doi.org/10.1155/2015/671527.
59 Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
60 Altabey, W.A. (2017), "An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS", Adv. Nano Res., Int. J., 5(4), 337-357. https://doi.org/10.12989/anr.2017.5.4.337.