• 제목/요약/키워드: beam on elastic foundation

검색결과 231건 처리시간 0.024초

Vibration analysis of steel fiber reinforced self-compacting concrete beam on elastic foundation

  • Ozdemir, Mahmut Tunahan;Kobya, Veysel;Yayli, Mustafa Ozgur;Mardani-Aghabaglou, Ali
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.85-97
    • /
    • 2021
  • In this study, the effect of steel fiber utilization, boundary conditions, different beam cross-section, and length parameter are investigated on the free vibration behavior of fiber reinforced self-compacting concrete beam on elastic foundation. In the analysis of the beam model recommended by Euler-Bernoulli, a method utilizing Stokes transformations and Fourier Sine series were used. For this purpose, in addition to the control beam containing no fiber, three SCC beam elements were prepared by utilization of steel fiber as 0.6% by volume. The time-dependent fresh properties and some mechanical properties of self-compacting concrete mixtures were investigated. In the modelled beam, four different beam specimens produced with 0.6% by volume of steel fiber reinforced and pure (containing no fiber) SCC were analyzed depending on different boundary conditions, different beam cross-sections, and lengths. For this aim, the effect of elasticity of the foundation, cross-sectional dimensions, beam length, boundary conditions, and steel fiber on natural frequency and frequency parameters were investigated. As a result, it was observed that there is a noticeable effect of fiber reinforcement on the dynamic behavior of the modelled beam.

Response of a completely free beam on a tensionless Pasternak foundation subjected to dynamic load

  • Celep, Z.;Guler, K.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.61-77
    • /
    • 2011
  • Static and dynamic responses of a completely free elastic beam resting on a two-parameter tensionless Pasternak foundation are investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated load at its middle. Governing equations of the problem are obtained and solved by paying attention on the boundary conditions of the problem including the concentrated edge foundation reaction in the case of complete contact and lift-off condition of the beam ina two-parameter foundation. The nonlinear governing equation of the problem is evaluated numerically by adopting an iterative procedure. Numerical results are presented in figures to demonstrate the non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively by considering the static and dynamic loading cases.

Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads

  • Hamed, Mostafa A.;Mohamed, Salwa A;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.75-89
    • /
    • 2020
  • The current paper illustrates the effect of in-plane varying compressive force on critical buckling loads and buckling modes of sandwich composite laminated beam rested on elastic foundation. To generalize a proposed model, unified higher order shear deformation beam theories are exploited through analysis; those satisfy the parabolic variation of shear across the thickness. Therefore, there is no need for shear correction factor. Winkler and Pasternak elastic foundations are presented to consider the effect of any elastic medium surrounding beam structure. The Hamilton's principle is proposed to derive the equilibrium equations of unified sandwich composite laminated beams. Differential quadrature numerical method (DQNM) is used to discretize the differential equilibrium equations in spatial direction. After that, eigenvalue problem is solved to obtain the buckling loads and associated mode shapes. The proposed model is validated with previous published works and good matching is observed. The numerical results are carried out to show effects of axial load functions, lamination thicknesses, orthotropy and elastic foundation constants on the buckling loads and mode shapes of sandwich composite beam. This model is important in designing of aircrafts and ships when non-uniform compressive load and shear loading is dominated.

전달행렬과 강성행렬에 의한 탄성지반상의 원형탱크해석 (An Analysis of Cylindrical Tank of Elastic Foundation by Transfer Matrix and Stiffness Matrix)

  • 남문희;하대환;이관희;장홍득
    • 전산구조공학
    • /
    • 제10권1호
    • /
    • pp.193-200
    • /
    • 1997
  • 탄성지반상의 원형탱크해석에는 여러방법이 있지만 최근에 널리 사용되는 방법은 유한요소법이다. 그러나 이 방법은 탄성지반상의 탱크해석시 많은 절점수가 필요하게 된다. 이것은 곧 많은 계산기 기억용량 및 계산시간 뿐만 아니라 노력이 필요하게 된다. 본 연구에서는 유사탄성지반보(Analogy of Beam on Elastic Foundation) 및 지반강성행렬(Foundation Stiffness Matrix)을 이용하여 축대칭하중을 받는 축대칭탱크를 뼈대 구조화 할 수 있었다. 또한 이 뼈대 구조를 유한요소로 분할하고, 각 요소 강성행렬(Stiffness Matrix)을 전달행렬(Transfer Matrix)로 전환하여 전달행렬법으로 원형탱크를 해석 할 수 있었다. 유한요소법과 전달행렬법을 탄성지반상의 원형탱크 해석에 적용한 결과 두 해석결과의 차이는 없고, 전달행렬법을 적용한 경우 최종 연립방정식수가 4개로 간략화 되었다.

  • PDF

A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in two-parameter elastic foundation

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.313-336
    • /
    • 2017
  • This article investigates vibration behavior of magneto-electro-elastic functionally graded (MEE-FG) nanobeams embedded in two-parameter elastic foundation using a third-order parabolic shear deformation beam theory. Material properties of MEE-FG nanobeam are supposed to be variable throughout the thickness based on power-law model. Based on Eringen's nonlocal elasticity theory which captures the small size effects and using the Hamilton's principle, the nonlocal governing equations of motions are derived and then solved analytically. Then the influences of elastic foundation, magnetic potential, external electric voltage, nonlocal parameter, power-law index and slenderness ratio on the frequencies of the embedded MEE-FG nanobeams are studied.

Eigen analysis of functionally graded beams with variable cross-section resting on elastic supports and elastic foundation

  • Duy, Hien Ta;Van, Thuan Nguyen;Noh, Hyuk Chun
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.1033-1049
    • /
    • 2014
  • The free vibration of functionally graded material (FGM) beams on an elastic foundation and spring supports is investigated. Young's modulus, mass density and width of the beam are assumed to vary in thickness and axial directions respectively following the exponential law. The spring supports are also taken into account at both ends of the beam. An analytical formulation is suggested to obtain eigen solutions of the FGM beams. Numerical analyses, based on finite element method by using a beam finite element developed in this study, are performed in order to show the legitimacy of the analytical solutions. Some results for the natural frequencies of the FGM beams are given considering the effect of various structural parameters. It is also shown that the spring supports show the greatest effect on the natural frequencies of FGM beams.

An investigation of the thermodynamic effect on the response of FG beam on elastic foundation

  • Bouiadjra, Rabbab Bachir;Bachiri, Attia;Benyoucef, Samir;Fahsi, Bouazza;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.115-127
    • /
    • 2020
  • This study presents an analytical approach to investigate the thermodynamic behavior of functionally graded beam resting on elastic foundations. The formulation is based on a refined deformation theory taking into consideration the stretching effect and the type of elastic foundation. The displacement field used in the present refined theory contains undetermined integral forms and involves only three unknowns to derive. The mechanical characteristics of the beam are assumed to be varied across the thickness according to a simple exponential law distribution. The beam is supposed simply supported and therefore the Navier solution is used to derive analytical solution. Verification examples demonstrate that the developed theory is very accurate in describing the response of FG beams subjected to thermodynamic loading. Numerical results are carried out to show the effects of the thermodynamic loading on the response of FG beams resting on elastic foundation.

An exact finite element for a beam on a two-parameter elastic foundation: a revisit

  • Gulkan, P.;Alemdar, B.N.
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.259-276
    • /
    • 1999
  • An analytical solution for the shape functions of a beam segment supported on a generalized two-parameter elastic foundation is derived. The solution is general, and is not restricted to a particular range of magnitudes of the foundation parameters. The exact shape functions can be utilized to derive exact analytic expressions for the coefficients of the element stiffness matrix, work equivalent nodal forces for arbitrary transverse loads and coefficients of the consistent mass and geometrical stiffness matrices. As illustration, each distinct coefficient of the element stiffness matrix is compared with its conventional counterpart for a beam segment supported by no foundation at all for the entire range of foundation parameters.

건성마찰력을 받는 탄성재료의 안정성에 미치는 중간 지지의 효과 (Effect of an Intermediate Support on the Stability of Elastic Material Subjected to Dry Friction Force)

  • 류시웅;장탁순
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.129-135
    • /
    • 2004
  • This paper discussed on the effect of an intermediate support on the stability of elastic material subjected to dry friction force. It is assumed in this paper that the dry frictional force between a tool stand and an elastic material can be modeled as a distributed follower force. The elastic material on the friction material is modeled for simplicity into an elastic beam on Winkler-type elastic foundation. The stability of beams on the elastic foundation subjected to distributed follower force is formulated by using finite element method to have a standard eigenvalue problem. The first two eigen-frequencies are obtained to investigate the dynamics of the beam. The eigen-frequencies yield the stability bound and the corresponding unstable mode. The considered beams lose its stability by flutter or divergence, depending on the location of intermediate support.

종동력을 받는 외팔 Timoshenko보의 동적안정성에 미치는 부분탄성기초의 영향 (Effect of a Partial Elastic Foundation on Dynamic Stability of a Cantilevered Timoshenko Beam under a Follower Force)

  • 류봉조;류시웅;한현희;김효준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.911-916
    • /
    • 2004
  • The paper deals with the dynamic stability of a cantilevered Timoshenko beam on partial elastic foundations subjected to a follower force. The beam is assumed to be a Timoshenko beam with a concentrated mass taking into account its rotary inertia and shear deformation. Governing equations are derived by extended Hamilton's principle, and FEM is applied to solve the discretized equation. Critical follower force depending on the attachment ratios of partial elastic foundations, concentrated mass and rotary inertia of the beam is fully investigated.

  • PDF