• Title/Summary/Keyword: beam function

Search Result 1,357, Processing Time 0.036 seconds

Development of Intelligent Remote Beam Control Function in E-Beam Manufacturing System (전자빔 가공기의 지능형 원격 빔 조절 기능의 개발)

  • Lim Sun-Jong;Lyou Joon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.24-29
    • /
    • 2006
  • The use electron-beam(E-beam) manufacturing system provides a means to alleviate optic exposure equipment's problems. We are developing an E-beam manufacturing system with scanning electron microscope(SEM) function. The E-beam manufacturing system consist of high voltage generator, beam blanker, condenser lenses, object lenses, stigmator and stage. The development of E-beam manufacturing system is used on the method of remaking SEM's structure. The functions of SEM are developed. It is important for the test of E-beam performance. In E-beam manufacturing system and SEM, beam focus is important function. In this paper, we propose intelligent remote control function for beam focus in E-beam manufacturing system. The function extends the user's function and gives convenience.

Measurement of Spatial coherence function and Directional coherence function of Propagating Laser Beam by using Wigner Distribution Function

  • Lee, Chang-Hyuck;Kang, Yoon-Shik;Noh, Jae-Woo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.449-450
    • /
    • 2009
  • The spatial coherence and propagation property of laser beam propagating through several optical components were studied experimentally by using the measurement of Wigner distribution function. It is shown experimentally that the Wigner function measurement yields total degree of coherence, beam quality parameter, and the near and the far field information of the propagating beam. More complete characterization of the laser beam was achieved by applying the Schmidt mode decomposition to the Wigner distribution function, spatial coherence function and directional coherence function. Fine details of coherence property are understood by the characteristics of the contributing eigenmodes.

  • PDF

Lateral Vibration Analysis of a Nonuniform Beam by Ritz's Method (Ritz법에 의한 비균일 단면 외팔보의 횡진동 해석)

  • Park, Sok-Chu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.946-949
    • /
    • 2007
  • This paper discusses the lateral vibration of a beam with boundary condition of one end fixed and the other end free. The uniform beam has a solution by summation of some simple exponential functions. But if its shape is not uniform, its solution could be by Bessel's function or mathematical solution could not exist. Even if the solution of Bessel's function exists, as Bessel function is a series function, we must get the solution by numerical method. Author had proposed the solution of the matrix method by Ritz's method and a new mode shape function, and had earned the good results for a wedge beam. Hereby a vibration analysis for the tapered beam with circle cross section was executed, and so good results were showed.

The Control of Flexible Beam using Nonlinear Compensator with Dual-Input Describing Function (쌍입력 기술함수를 갖는 비선형 보상기를 이용한 유연한 빔의 제어)

  • 권세현;이형기;최부귀
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.644-650
    • /
    • 1998
  • In this paper , a state space model for flexible beam is presented using the assumed-modes approach. The state space equation is derived for a flexible beam in which one end is connected to a motor and is driven by a torque equation and the other end is free. Many of the transfer function proposed thus far use the torque to the flexible beam as the input and the tip deflection of the flexible beam as the output. The Technique for the analysis and synthesis of the dual-input describing function(DIDF) is introduced here and the construction of a non-linear compensator, based on this technique, is proposed. This non-linear compensator, properly connected in the direct path of a closed-loop linear or non-linear control system. The above non-linear network is used to compensate linear and non-linear systems for instability, limit cycles, low speed of response and static accuracy. The effectiveness of the proposed scheme is demonstrated through computer simulation and experimental results.

  • PDF

A Vibration Control of a Flexible Beam using a Nonlinear Compensator with Complex Dual-Input Describing Function (복소쌍입력 기술함수를 갖는 비선형 보상기를 이용한 유연한 빔의 진동제어)

  • 권세현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.227-235
    • /
    • 1999
  • In this paper a vibration control fo a one-link flexible beam is considered. At first a state-space model for a flexible beam is derived by using the assumed-modes approach. Based on this model the transfer function between the applied torque and the tip deflection fo the beam is presented because it is convenient to apply our method. In general there exist some control difference due to flexibility of the beam so we adop a forward-passive controller to reduce these phenomena. And a complex dual-input describing function compensator is used to control the tip deflection. The stabiltiy and the performance of the closed-loop system are analyzed. Finally the validity of the derived model and the effectiveness of proposed controller are confirmed throuth simula-tions and experiments.

  • PDF

Physics based basis function for vibration analysis of high speed rotating beams

  • Ganesh, R.;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.21-46
    • /
    • 2011
  • The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.

Green's function coupled with perturbation approach to dynamic analysis of inhomogeneous beams with eigenfrequency and rotational effect's investigations

  • Hamza Hameed;Sadia Munir;F.D. Zaman
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.19-40
    • /
    • 2024
  • The elastic theory of beams is fundamental in engineering of design and structure. In this study, we construct Green's function for inhomogeneous fourth-order differential operators subjected to associated constraints that arises in dealing with dynamic problems in the Rayleigh beam. We obtain solutions for homogeneous and completely inhomogeneous beam problems using Green's function. This enables us to consider rotational influences in determining the eigenfrequency of beam vibrations. Additionally, we investigate the dynamic vibration model of inhomogeneous beams incorporating rotational effects. The eigenvalues of Rayleigh beams, including first-order correction terms, are also computed and displayed in tabular forms.

Measurement of Spatial Coherence Function of multy-mode beam by using a Sagnac Interferometer

  • Lee, Chang-Hyeok;Gang, Yun-Sik;No, Jae-U
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.187-189
    • /
    • 2008
  • The spatial coherence function of multy-mode beam was measured by using a Sagnac interferometer and self referencing technique. For leaner polarization laser beam passing through a multy-mode fiber, its change value of spatial mode and polarization from stress of faber and input coupling angle. And each spatial mode have each polarizations, when we simulation Wigner distribution function and Spatial Correlation function of spatial multi-mode beam by using Hermit Gaussian modes leaner sum. We measured spatial coherence function of using by multy-mode fiber. One can use this measurement method to study and characterize the property of multy-mode light field coming out of GRIN multy-mode fiber.

  • PDF

Ion-induced secondary electron emission coefficient and work function for MgO thin film with $O_2$ plasma treatment

  • Jung, J.C.;Jeong, H.S.;Lee, J.H.;Oh, J.S.;Park, W.B.;Lim, J.Y.;Cho, J.W.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.525-528
    • /
    • 2004
  • The ion-induced secondary electron emission coefficient ${\gamma}$ and work function for MgO thin film with $O_2$ plasma treatment has been investigated by ${\gamma}$ -FIB (focused ion beam) system. The MgO thin film deposited from sintered material with $O_2$ plasma treatment is found to have higher ${\gamma}$ and lower work function than those without $O_2$ plasma treatment. The energy of various ions used has been ranged from 100eV to 200eV throughout this experiment. It is found that the highest secondary electron emission coefficient ${\gamma}$ has been achieved for 10 minutes of $O_2$ plasma treatment under RF power of 50W.

  • PDF

Baseline-free damage detection method for beam structures based on an actual influence line

  • Wang, Ning-Bo;Ren, Wei-Xin;Huang, Tian-Li
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.475-490
    • /
    • 2019
  • The detection of structural damage without a priori information on the healthy state is challenging. In order to address the issue, the study presents a baseline-free approach to detect damage in beam structures based on an actual influence line. In particular, a multi-segment function-fitting calculation is developed to extract the actual deflection influence line (DIL) of a damaged beam from bridge responses due to a passing vehicle. An intact basis function based on the measurement position is introduced. The damage index is defined as the difference between the actual DIL and a constructed function related to the intact basis, and the damage location is indicated based on the local peak value of the damage index curve. The damage basis function is formulated by using the detected damage location. Based on the intact and damage basis functions, damage severity is quantified by fitting the actual DIL using the least-square calculation. Both numerical and experimental examples are provided to investigate the feasibility of the proposed method. The results indicate that the present baseline-free approach is effective in detecting the damage of beam structures.