• Title/Summary/Keyword: beam columns

Search Result 509, Processing Time 0.027 seconds

A Nonlinear FEM Analysis of Connections Between Concrete Filled Steel Tube Columns and H-Beams (콘크리트충전(充塡) 각형강관(角形鋼管) 기둥과 H형강 보 접합부(接合部)의 비선형 유한요소해석)

  • Yun, Hyun-Do;Kim, Ok-Ryong;Kim, Ok-Ryong;Lee, Hun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.209-218
    • /
    • 2003
  • The analytical studies included nonlinear finite element analysis of split-tee connection details subjected to axial load and lateral load. A three-dimensional model of the connections between CFT columns and H-beams has been developed. Both initial geometrical imperfections and residual stresses are taken into consideration. A geometrically nonlinear load-displacement analysis of the structure containing the imperfection is then performed, using the Riks method. Analytical results are compared with existing experimental results. Extensive parametric analyses are carried out to investigate the relation of the connections between CFT columns and H-beam to various parameters such as the axial load, column width-thickness ratio, and split-tee thickness.

An experimental study of connections between I-beams and concrete filled steel tubular columns

  • De Nardin, Silvana;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.303-315
    • /
    • 2004
  • Frame composed of concrete-filled steel tubular columns and I-shaped steel beam has been researched in order to development reasonable connection details. The present paper describes the results of an experimental program in four different connection details. The connection details considered include through-bolt between I-shaped steel beams and concrete-filled steel tubular columns and two details of welded connections. One of the welded connection details is stiffened by angles welded in the interior of the profile wall at the beam flange level. The specimens were tested in a cruciform loading arrangement with variable monotonic loading on the beams and constant compressive load on the column. For through-bolt details, the contribution of friction and bearing were investigated by embedding some of the bolts in the concrete. The results of the tests show that through-bolt connection details are very ductility and the bearing is not important to the behavior of these moment connections. The angles welded in the interior of the profile wall increase the strength and stiffness of the welded connection detail. In addition, the behavior curves of these connections are compared and some interesting conclusions are drawn. The results are summarized for the strength and stiffness of each connection.

Behavior of stiffened and unstiffened CFT under concentric loading, An experimental study

  • Deifalla, Ahmed F.;Fattouh, Fattouh M.;Fawzy, Mona M.;Hussein, Ibrahim S.
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.793-803
    • /
    • 2019
  • Concrete-filled steel tubular (CFST) beam-columns are widely used owing to their good performance. They have high strength, ductility, large energy absorption capacity and low costs. Externally stiffened CFST beam-columns are not used widely due to insufficient design equations that consider all parameters affecting their behavior. Therefore, effect of various parameters (global, local slenderness ratio and adding hoop stiffeners) on the behavior of CFST columns is studied. An experimental study that includes twenty seven specimens is conducted to determine the effect of those parameters. Load capacities, vertical deflections, vertical strains and horizontal strains are all recorded for every specimen. Ratio between outer diameter (D) of pipes and thickness (t) is chosen to avoid local buckling according to different limits set by codes for the maximum D/t ratio. The study includes two loading methods on composite sections: steel only and steel with concrete. The case of loading on steel only, occurs in the connection zone, while the other load case occurs in steel beam connecting externally with the steel column wall. Two failure mechanisms of CFST columns are observed: yielding and global buckling. At early loading stages, steel wall in composite specimens dilated more than concrete so no full bond was achieved which weakened strength and stiffness of specimens. Adding stiffeners to the specimens increases the ultimate load by up to 25% due to redistribution of stresses between stiffener and steel column wall. Finally, design equations previously prepared are verified and found to be only applicable for medium and long columns.

Free Vibrations and Buckling Loads of Tapered Beam-Columns of Regular Polygon Cross-section with Constant Volume (일정체적의 정다각형 단면을 갖는 변단면 보-기둥의 자유진동 및 좌굴하중)

  • Lee, Byong Koo
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.587-594
    • /
    • 1996
  • The differential equation governing both the free vibrations and buckling loads of tapered beam-columns of regular polygon cross-section with constant volume were derived and solved numerically. The parabolic and sinusoidl tapers were chosen as the variable depth of cross-section for the tapered beam-column. In numerical examples, the clamped-clamped, hinged-clamped and hinged-hinged end constraints were considered. The variations of frequency parameters and first buckling load parameters with the non-dimensional system parameters are reported in figures, and typical vibrating mode shapes are presented. Also, the configurations of strongest columns were determined.

  • PDF

Dynamic Optimal Shapes of Simple Beam-Columns with Constant Volume (일정체적 단순지지 보-기둥의 동적 최적단면)

  • Lee, Byoung Koo;Park, Kwang Kyou;Mo, Jeong Man;Lee, Sang Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.221-228
    • /
    • 1997
  • The main purpose of this paper is to determine the dynamic optimal shapes of simple beam-columns with the constant volume. The parabolic function is chosen as the variable equation for the depth of regular polygon cross-section. The ordinary differential equation including the effect of axial load is applied to calculate the natural frequencies. The Runge-Kutta and Regula-Falsi methods are used to integrate the differential equation and compute the frequencies, respectively. Then the dynamic optimal shape whose lowest natural frequency is highest is determined by reading the critical value of the frequency versus section ratio curve plotted by the frequency data. In the numerical examples, the simple beam-columns are analysed and the numerical results of this study are shown in tables and figures.

  • PDF

The Bucking Strength and the Application of design of Design Formula of High Strength H-Shaped Section Steel Members (고강도 H형강 부재의 좌굴내력과 설계식에의 적용에 관한 연구)

  • Kim, Jin Kyong;Kim, Hee Dong;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.123-131
    • /
    • 2001
  • The objective of this study is to investigate the criteria of the width-to-thickness ratio and to evaluate the buckling strength of high strength steel beam-columns and to compare their buckling strength with design codes, which are the Limit State Design code and the Allowable Stress Desogn code(drift). SM520TMC and SM570Q class steels are used for high strength steels. The coupon test and the stub column test were carried out to investigate the properties of high strength steels and the stress-strain curves of stub columns. The buckling strength of high strength steel beam-columns are assessed by numerical analysis used axial force, moment and curvature relationships.

  • PDF

Modelling and experiment of semi rigid joint between composite beam and square CFDST column

  • Guo, Lei;Wang, Jingfeng;Zhang, Meng
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.803-818
    • /
    • 2020
  • Semi-rigid connections with blind bolts could solve the difficulty that traditional high strength bolts were unavailable to splice a steel/composite beam to a closed section column. However, insufficient investigations have focused on the performance of semi-rigid connection to square concrete filled double-skin steel tubular (CFDST) columns. In this paper, a component model was developed to evaluate the mechanical behavior of semi-rigid composite connections to CFDST columns considering the stiffness and strength of column face in compression and column web in shear which were determined by the load transfer mechanism and superstition method. Then, experimental investigations on blind bolted composite joints to square CFDST columns were conducted to validate the accuracy of the component model. Dominant failure modes of the connections were analyzed and this type of joint behaved semi-rigid manner. More importantly, strain responses of CFDST column web and tubes verified that stiffness and strength of column face in compression and column web in shear significantly affected the connection mechanical behavior owing to the hollow part of the cross-section for CFDST column. The experimental and analytical results showed that the CFDST column to steel-concrete composite beam semi-rigid joints could be employed for the assembled structures in high intensity seismic regions.

Explicit expressions for inelastic design quantities in composite frames considering effects of nearby columns and floors

  • Ramnavas, M.P.;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.437-447
    • /
    • 2017
  • Explicit expressions for rapid prediction of inelastic design quantities (considering cracking of concrete) from corresponding elastic quantities, are presented for multi-storey composite frames (with steel columns and steel-concrete composite beams) subjected to service load. These expressions have been developed from weights and biases of the trained neural networks considering concrete stress, relative stiffness of beams and columns including effects of cracking in the floors below and above. Large amount of data sets required for training of neural networks have been generated using an analytical-numerical procedure developed by the authors. The neural networks have been developed for moments and deflections, for first floor, intermediate floors (second floor to ante-penultimate floor), penultimate floor and topmost floor. In the case of moments, expressions have been proposed for exterior end of exterior beam, interior end of exterior beam and both interior ends of interior beams, for each type of floor with a total of twelve expressions. Similarly, in the case of deflections, expressions have been proposed for exterior beam and interior beam of each type of floor with a total of eight expressions. The proposed expressions have been verified by comparison of the results with those obtained from the analytical-numerical procedure. This methodology helps to obtain the inelastic design quantities from the elastic quantities with simple calculations and thus would be very useful in preliminary design.

Free Vibrations and Buckling Loads of Tapered Beam-Columns of Circular Cross-Section with Constant Volume (일정체적 원형 변단면 보-기둥의 자유진동 및 좌굴하중)

  • 이병구
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.135-143
    • /
    • 1996
  • The differential equations governing both the free vibrations and buckling loads of tapered beam-columns of circular cross-section with constant volume are derived and solved numerically. The effects of axial load are included in the differential equations. The parabolic equation is chosen as the variable radius of circular cross-section for the tapered beam-column. In numerical examples, the clamped-clamped, clamped-hinged and hinged-hinged end constraints are considered. The variations of the frequency parameters and buckling load parameters with the non-dimensional system parameters are presented in figures and the configurations of strongest columns are obtained.

  • PDF

Nonlinear Finite Element Analysis of Reinforced Concrete Column using Timoshenko Beam Theory and Fiber Section Model (Timoshenko보 이론 및 층상화 단면모델을 이용한 RC 기둥의 비선형 유한요소해석)

  • Park, Soon Eung;Park, Moon Ho;Kwon, Min Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.577-585
    • /
    • 2006
  • In this research, nonlinear Timoshenko beam element that is able to capture nonlinear shear deformation is developed. The proposed model shows more reasonable prediction than Bernoulli beam theory in short columns or strong shear column due to the consideration of shear deformation. The cross-section is modeled as fiber approach. Since the model is based on the fiber approach for section discretization, the plastic progress of the section can be traced and the coupling effect of the axial and flexural response. The developed element is implemented into the finite element program to analysis general reinforced concrete structures. As parametric study, reinforced concrete columns are analyzed and compared with experimental results, analyzed the property of behavior for reinforced concrete columns.