• Title/Summary/Keyword: beam absorption

Search Result 352, Processing Time 0.024 seconds

X-ray Absorption Near-edge Studies of Au1-xPtx alloys

  • Y.D. Chung;Lim, K.Y.;Lee, Y.S.;C.N.Whang;Park, B.S.;Y.Jeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.164-164
    • /
    • 2000
  • Since Au-Pt alloys have various atomic structures depending upon composition and annealing temperature, it is very interesting to investigate the electronic structures of alloys. We studied the changes of the electronic structure I the Au-Pt alloys by x-ray absorption near edge spectroscopy (XANES). Two kinds of Au-Pt alloy samples were prepared by arc melting methods and ion-beam-mixing technique. The Pt L2, 3-edge and Au L2, 3-edge X-ray absorption spectra (XPS) were measured with the electron yield mode detector at the 3C1 beam line of the Pohang Light Source (PLS). It was found that there was a substantial decrease in the area of the Pt L2, 3 white lines compared with that of pure Pt. The observed decrease in white line area was attributed to an increase in the number of pure Pt. The observed decrease in white line area was attributed to an increase in the number of 5d-electrons at the Pt site upon alloy formation. However, the Au L2, 3 edge spectra for Au-Pt alloys are all similar to that of pure Au. This implies that the 5d hole count of Au is not changed by alloy formation with Pt.

  • PDF

Bending Performance Evaluation of Aluminum-Composite Hybrid Square Tube Beams (알루미늄-복합재료 혼성 사각관 보의 굽힘 성능평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.76-79
    • /
    • 2005
  • Bending deformation and energy absorption characteristics of aluminum-composite hybrid tube beams have been analyzed for improvement in the bending performance of aluminum space frame by using experimental tests combined with theoretical and finite element analyses. Hybrid tube beams composed of glass fabric/epoxy layer wrapped around on aluminum tube were made in autoclave with the recommended curing cycle. Basic properties of aluminum material used for initial input data of the finite element simulation and theoretical analysis were obtained from the true stress-true strain curve of specimen which had bean extracted from the Al tube beam. A modified theoretical model was developed to predict the resistance to the collapse of hybrid tube beams subjected to a bending load. Theoretical moment-rotation angle curves of hybrid tube beams were in good agreement with experimental ones, which was comparable to the results obtained from finite element simulation. Hybrid tube beams strengthened by composite layer on the whole web and flange showed an excellent bending strength and energy absorption capability.

  • PDF

Design and Development of an Ultralow Optical Loss Mirror Coating for Zerodur Substrate

  • Cho, Hyun-Ju;Lee, Jae-Cheul;Lee, Sang-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.80-84
    • /
    • 2012
  • A high reflectance mirror, which has very low absorption and scattering loss, was coated onto a crystalline substrate by ion beam sputtering and then annealed at $450^{\circ}C$. We carefully selected the mirror coating material, and designed the high reflectance mirror, in order to avoid UV degradation which comes from the He-Ne plasma. We measured the surface roughness of the Zerodur substrate using phase shift interferometry and atomic force microscopy, and compared it with the TIS scattering of the mirror. The cavity ring-down method was used to measure the absorption of the mirror, and the thin film structure was correlated to its results. We also compared the optical properties of coated mirrors before and after annealing.

Preparation and Nonlinear Optical Properties of CuCl-doped Nonlinear Optical Glasses : II. Nonlinear Optical Properties (CuCl 미립자가 분산된 비선형 광학유리의 제조와 비선형 광특성: II. 비선형 광특성)

  • 윤영권;한원택;이민영
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.429-435
    • /
    • 1997
  • The third order nonlinear optical susceptibilities, {{{{ chi }}(3), of the CuCl doped alumino-borosilicate glasses were measured by the two beam configuration DFWM method and the absorption saturation method, and the measured {{{{ chi }}(3) values were about 10-8 esu in both methods. The response time was estimated to be about 105ps from the time decay curve of the luminescence spectra obtained by time-correlated single-photon counting (TCSPC) method.

  • PDF

Design and fabrication of beam dumps at the µSR facility of RAON for high-energy proton absorption

  • Jae Chang Kim;Jae Young Jeong;Kihong Pak;Yong Hyun Kim;Junesic Park;Ju Hahn Lee;Yong Kyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3692-3699
    • /
    • 2023
  • The Rare isotope Accelerator complex for ON-line experiments in Korea houses several accelerator complexes. Among them, the µSR facility will be initially equipped with a 600 MeV and 100 kW proton beam to generate surface muons, and will be upgraded to 400 kW with the same energy. Accelerated proton beams lose approximately 20% of the power at the target, and the remaining power is concentrated in the beam direction. Therefore, to ensure safe operation of the facility, concentrated protons must be distributed and absorbed at the beam dump. Additionally, effective dose levels must be lower than the legal standard, and the beam dumps used at 100 kW should be reused at 400 kW to minimize the generation of radioactive waste. In this study, we introduce a tailored method for designing beam dumps based on the characteristics of the µSR facility. To optimize the geometry, the absorbed power and effective dose were calculated using the MCNP6 code. The temperature and stress were determined using the ANSYS Mechanical code. Thus, the beam dump design consists of six structures when operated at 100 kW, and a 400 kW beam dump consisting of 24 structures was developed by reusing the 100 kW beam dump.

The optical characteristics of amorphous $Se_{75}Ge_{25}$ thin film by the low-energy lon beam exposure (저 에너지 이온빔 조사에 따른 비정질 $Se_{75}Ge_{25}$ 박막의 광학적 특성)

  • 이현용;오연한;정홍배
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.100-106
    • /
    • 1994
  • A bilayer film consisting of a layer of a-Se$_{75}$ Ge$_{25}$ with a surface layer of silver -100[.angs.] thick and a monolayer film of a-Se$_{75}$ Ge$_{25}$ are irradiated with 9[keV] Ga$^{+}$ ion beam. The Ga$^{+}$ ion (10$^{16}$ [ions/cm$^{2}$] exposed a-Se$_{75}$ Ge$_{25}$ and Ag/a-Se$_{75}$ Ge$_{25}$ thin films show an increase in optical absorption, and the absorption edge on irradiation with shifts toward longer wavelength. The shift toward longer wavelength called a "darkening effect" is observed also in film exposure to optical radiation(4.5*10$^{20}$ [photons/cm$^{2}$]). The 0.3[eV] edge shift for ion irradiation films is about twice to that obtained on irradiation with photons. These large changes are primarily due to structural changes, which lead to high etch selectivity and high sensitivity.

  • PDF

A Plastic BGA Singulation using High Thermal Energy of $2^{nd}$ Harmonic Nd:YAG Laser

  • Lee, Kyoung-Cheol;Baek, Kwang-Yeol;Lee, Cheon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.309-313
    • /
    • 2002
  • In this paper, we have studied minimization of the kerf-width and surface burning, which occurred after the conventional singulation process of the multi-layer BGA board with copper, polyethylene and epoxy glass fiber. The high thermal energy of a pulsed Nd:YAG laser is used to cut the multi-layer board. The most considerable matter in the laser cutting of the multi-layer BGA boards is their different absorption coefficient to the laser beam and their different heat conductivity. The cut mechanism of a multi-layer BGA board using a 2$^{nd}$ harmonic Nd:YAG laser is the thermal vaporization by high temperature rise based on the Gaussian profile and copper melting point. In this experiment, we found that the sacrifice layer and Na blowing are effective in minimizing the surface burning by the reaction between oxygen in the air and the laser beam. In addition, N2 blowing reduces laser energy loss by debris and suppresses surface oxidation. Also, the beam incidence on the epoxy layer compared to polyimide was much more suitable to reduce damage to polyimide with copper wire for the multi layer BGA singulation. When the polyester double-sided tape is used as a sacrifice layer, surface carbonization becomes less. The SEM, non-contact 3D inspector and high-resolution microscope are used to measure cut line-width and surface morphology.

Laser Micro-Joining and Soldering (레이저 마이크로 접합 및 솔더링)

  • Hwang, Seung Jun;Kang, Hye Jun;Kim, Jeng O;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • In this paper, the principles, types and characteristics of the laser and laser soldering are introduced. Laser soldering methods for electronics, metals, semiconductors are also presented. Laser soldering is a non-contact process that transfers energy to solder joint by a precisely controlled beam. Demands for laser soldering are increasing due to bonding for complex circuits and local heating in micro joint. Laser absorption ratio depends on materials, and each material has different absorption or reflectivity of the laser beam, which requires fine adjustment of the laser beam. Laser types and operating conditions are also important factors for laser soldering performance. In this paper, the performance of Nd:YAG laser soldering is compared to the hot blast reflow. Meanwhile, a diode laser gives different wavelength and smaller parts with high performance, but it has various reliability issues such as heat loss, high power, and cooling technology. These issues need to be improved in the future, and further studies for laser micro-joining and soldering are required.

MICROSTRUCTURAL STUDY OF $Fe_{1-x}Ti_x$ ALLOYS FORMED BY ION BEAM MIXING

  • Jeon, Y.;Lee, Y.S.;Choi, B.S.;Woo, J.J.;Whang, C.N.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.127-132
    • /
    • 1997
  • Microstructure of the Fe-Ti system by ion beam mixing of multilayers at 300 K and 77 K has been studied in a wide composition range. The ion bombardment was carried out using $Ar^+$ ions at 80 keV. Using grazing angle x-ray diffraction we find that the lattice parameters of these bcc solid solutions are very close to that of $\alpha$-Fe. Extended x-ray absorption fine-structure spectroscopy have been performed to investgate the short-range order in the ion-beam-mixed state. The structure parameters, such as the interatomic distance and the coordination number are estmated from the Fe K-edge Fourier filtered EXAFS spectra. The interatomic distance is independent of the alloy concentration and it is almost constant. The study of x-ray absorption near-edge structure gives information on the individual $\rho$components of the partial densityof states of the conduction band of the Fe and Ti We also find that a charge transfer from Ti to Fe atoms takes place.

  • PDF

A Study of Corrosion Resistance Improvement for Cr-Mo Steel in Long Term Service (장기간 사용한 Cr-Mo강의 내식성 향상 방법에 관한 연구)

  • Jin, Yeung-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.8-15
    • /
    • 2006
  • It is no wonder that mechanical structures are accompanied by problems related to corrosion after being exposed to long hours of work. Corrosion of mechanical structures has been the most serious problem in the field of industry. The present study employed a laser beam irradiation test to improve the corrosion resistance of degraded Cr-Mo steel, which was used for more than 60,000 hours. To find the optimum irradiation test condition for the corrosion resistance of degraded Cr-Mo steel, hardness and residual stress measurements, micro-structural observation, and the electrochemical potentiokinetic reactivation (EPR) tests were performed with changes in laser beam test conditions including laser beam output, diameter, and velocity. Thus, the present study indicates that the optimum test condition and absorption energy for a laser beam test need to be determined to enhance corrosion resistance of degraded Cr-Mo steel.