• 제목/요약/키워드: beam(supports)

검색결과 192건 처리시간 0.024초

연속 PSC-Beam 교량의 지점부 균열제어 (Control of Deck Cracking at Interior Supports of Continuous PSC-Beam Bridge)

  • 곽효경;서영재;정찬묵;박영하
    • 한국전산구조공학회논문집
    • /
    • 제12권2호
    • /
    • pp.201-214
    • /
    • 1999
  • 이 연구는 2경간 연속 PSC-Beam 교량의 경간 내측 지지점의 바닥판에서 발생할 수 있는 균열의 제어에 관한 내용을 다루고 있다. PSC-Beam 교량은 주형인 PSC-Beam을 거치시킨후 바닥판을 현장타설 콘크리트로 시공된다. 이로 인하여 주형 콘크리트와 바닥판 콘크리트의 시간의존적 거동차이, 주형의 연속화에 따른 거동 등에 의하여 부모멘트가 가장 크게 걸리는 지점부에서 균열이 쉽게 발생된다. 따라서 이 논문에서는 2경간 연속 PSC-Beam 교량의 연속화에 따른 거동을 수치적 방법으로 해석하여 지점부 바닥판의 균열거동이 예측되었다. 이를 위하여 해석모델에는 콘크리트의 시간의존적 현상인 크리프와 건조수축이 고려되었으며, 2경간 연속 PSC-Beam 교량의 거동에 영향을 나타내는 여러 가지 인자가 고려되어 해석되었다. 끝으로 콘크리트의 모델식을 이용하여 지점부 균열을 억제하기 위한 현장에서 관리가능한 방안이 수치적으로 제안되었다.

  • PDF

Large deflection of simple variable-arc-length beam subjected to a point load

  • Chucheepsakul, S.;Thepphitak, G.;Wang, C.M.
    • Structural Engineering and Mechanics
    • /
    • 제4권1호
    • /
    • pp.49-59
    • /
    • 1996
  • This paper considers large deflection problem of a simply supported beam with variable are length subjected to a point load. The beam has one of its ends hinged and at a fixed distance from this end propped by a frictionless support over which the beam can slide freely. This highly nonlinear flexural problem is solved by elliptic-integral method and shooting-optimization technique, thereby providing independent checks on the new solutions. Because the beam can slide freely over the frictionless support, there is a maximum or critical load which the beam can carry and it is dependent on the position of the load. Interestingly, two possible equilibrium configurations can be obtained for a given load magnitude which is less than the critical value. The maximum arc-length was found to be equal to about 2.19 times the fixed distance between the supports and this value is independent of the load position.

단순 PC 빔교의 연속 바닥슬래브에 발생하는 모멘트 분포 (Moment Distribution in continuous Slabs of Simply Supported Bridges)

  • 최창근;송명관
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.398-405
    • /
    • 1997
  • The finite element program is presented for the analysis of the moment distribution in continuous slabs of simply supported girders. The program includes the material nonlinearity of the continuous and steel reinforcements of the RC slabs, but assumes that the PC beam and cross beam behave linearly. In modeling the PC slabs and girders, the four node degenerated shell element formulated based on the assumed strain interpolation and the 3D beam element are used, respectively. Using the program, the influence of the existence of the cross bean, the filling of open joints on the continuous at supports, and perfect continuation of precast girder elements are examined.

  • PDF

Effects of the location and size of web openings on shear behavior of clamped-clamped reinforced concrete beams

  • Ceyhun Aksoylu;Yasin Onuralp Ozkilic;Ibrahim Y. Hakeem;Ilker Kalkan
    • Computers and Concrete
    • /
    • 제33권3호
    • /
    • pp.251-264
    • /
    • 2024
  • The present study pertains to the effects of variations in the location and size of drilled web openings on the behavior of fixed-fixed reinforced concrete (RC) beams. For this purpose, a reference bending beam with a transverse opening in each half span was tested to failure. Later, the same beam was modeled and analyzed with the help of finite element software using ABAQUS. Upon achieving close agreement between the experimental and numerical results, the location and size of the web opening were altered to uncover the effects of these factors on the shear strength and load-deflection behavior of RC beams. The experimental failure mode of the tested beam and the numerical results were also verified by theoretical calculations. In numerical analysis, when compared to the reference (D0) specimen, if the distance of the opening center from the support is 0 or h or 2h, reduction in load-bearing capacity of 1.5%-22.8% or 2.0%-11.3% or is 4.1%-40.7%. In other words, both the numerical analyses and theoretical calculations indicated that the beam behavior shifted from shear-controlled to flexure-controlled as the openings approached the supports. Furthermore, the deformation capacities, energy absorption values, and the ductilities of the beams with different opening diameters also increased with the decreasing distance of the opening from supports. Web compression failure was shown to be the predominant mode of failure of beams with large diameters due to the lack of sufficient material in the diagonal compression strut of the beam. The present study indicated that transverse openings with diameters, not exceeding about 1/3 of the entire beam depth, do not cause the premature shear failure of RC beams. Finally, shear damage should be prevented by placing special reinforcements in the areas where such gaps are opened.

철근배근형태에 따른 철근보강 숏크리트의 휨파괴 거동특성 연구 (Flexural Behavior of Reinforced Ribs of Shotcrete for Various Configurations of Reinforcements)

  • 박연준;이정기;노봉건;유광호;이상돈
    • 터널과지하공간
    • /
    • 제20권3호
    • /
    • pp.169-182
    • /
    • 2010
  • H-beam과 격자지보는 국내 터널공사에서 가장 널리 쓰이는 강지보재이다. 스칸디나비아를 비롯한 북유럽 국가들에서 흔히 쓰이는 철근보강 숏크리트는 H-beam 이나 격자지보 이상으로 경제적이고 효율적인 측면에서 이점이 있음에도 국내에서는 아직 적용되지 않고 있다. 본 연구에서는 실험실 시험을 통하여 국내 터널에 가장 적합한 철근 배근 설계를 결정하고자 복철근 배근을 포함하여 철근 배근 형태를 달리하여 시험을 수행하고 그 결과를 비교하였다. H-beam과 격자지보에 의한 보강효과도 같은 방법으로 분석하였다. 본 연구의 결과는 NMT나 NATM 터널에서 지보재의 선택 및 설계에 활용될 수 있을 것으로 판단된다.

터널지보의 굽힘거동에 관한 연구 (A Study on Bending Behavior of Tunnel Support)

  • 이동우;조석수;주원식
    • 대한기계학회논문집A
    • /
    • 제31권8호
    • /
    • pp.896-902
    • /
    • 2007
  • The tunnel stability concerned with safety is very important in coal production process. The tunnel supports made by the GI beam has been used in domestic coal mine tunnels, and the GI beam was connected with another by the fish plate. It is necessary to analysis for the bending problems of the fish plate due to the rock pressure in some domestic mine tunnels. Therefore, this study proposes the application possibility of the optimization algorithms for the problem searching a load condition that bring about bending problem in tunnels. Consequently, in order to investigate the load conditions, desirability function as one of the optimization methods to study the bending behavior of tunnel supports was applied.

지점변형을 하는 모임지붕형 쌍곡포물선쉘의 유한요소 해석 (Finite Element Analysis of Gabled Hyperbolic Paraboloid Shells Subjected to Support Movements)

  • 김승남;유은종;나창순
    • 한국공간구조학회논문집
    • /
    • 제12권4호
    • /
    • pp.57-69
    • /
    • 2012
  • This study investigated the behaviors of the gabled hyperbolic paraboloid shell structure subjected to differential settlement and the horizontal displacement due to the elongation of tie rod/beam on supports. Two types of shell structure with different roof slopes are used in study; conventional type which has perimeter beams around the shell panel, and simple type which removes the edge beams along the slab edge line. The effect of the removal of edge beam under vertical or horizontal displacement on supports, and the roof slope was compared using the finite element analysis.

강진 대비 굽힘 강성 향상을 위한 밸브지지대 형상 설계 (Valve Support Design for Improved Flexural Rigidity Against Strong Earthquake)

  • 김대진;김형은;석창성
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.75-80
    • /
    • 2017
  • In this study, seismic performance of various types of valve supports in terms of flexural rigidity are evaluated by FEA using equivalent static load method. Flexural rigidity of the existing two types of valve supports can be effectively improved by simply adding one more bracket on the other side of support. New types of polygonal valve supports with a concept of fully stressed beam theory are suggested and it is verified that the new supports are rigid enough to withstand stronger earthquake which we should be prepared for.

Analytic solution of Timoshenko beam excited by real seismic support motions

  • Kim, Yong-Woo
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.247-258
    • /
    • 2017
  • Beam-like structures such as bridge, high building and tower, pipes, flexible connecting rods and some robotic manipulators are often excited by support motions. These structures are important in machines and structures. So, this study proposes an analytic method to accurately predict the dynamic behaviors of the structures during support motions or an earthquake. Using Timoshenko beam theory which is valid even for non-slender beams and for high-frequency responses, the analytic responses of fixed-fixed beams subjected to a real seismic motions at supports are illustrated to show the principled approach to the proposed method. The responses of a slender beam obtained by using Timoshenko beam theory are compared with the solutions based on Euler-Bernoulli beam theory to validate the correctness of the proposed method. The dynamic analysis for the fixed-fixed beam subjected to support motions gives useful information to develop an understanding of the structural behavior of the beam. The bending moment and the shear force of a slender beam are governed by dynamic components while those of a stocky beam are governed by static components. Especially, the maximal magnitudes of the bending moment and the shear force of the thick beam are proportional to the difference of support displacements and they are influenced by the seismic wave velocity.

PSC-Beam 교량의 연속화에 따른 거동해석 (2) (Behaviors of PSC-Beam Bridges According to Continuity of Spans (2))

  • 곽효경;서영재;정찬묵;박영하
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.21-31
    • /
    • 1999
  • The companion paper presents an analytical model to predict behaviors of PSC-Beam bridges according to continuity of spans. This paper aims at providing several examples of its application to PSC-Beam bridge. In this regard, many uncertainties affecting to the continuity of spans (such as the ultimate shrinkage strain of slab and girders, the prestressing creep of girders, and the time adopting prestressing force) are analysis in detail. Moreover, to increase the serviceability and to remove th inherent structural defects including the cracking at interior supports, a necessity for the parametric studies of PSC-Beam bridges reflecting the construction sequence is emphasized.