• Title/Summary/Keyword: bead

Search Result 1,714, Processing Time 0.026 seconds

Development of Low Frequency Pulse MIG Welding Process for AL and its alloy (AL 및 AL합금의 저주파 PULSE MIG 용접법의 개발)

  • 최병길;이사영;이승학;천성진
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.45-48
    • /
    • 1997
  • The low frequency pulsed MIG welding process of new current waveform control to switch over unit pulse conditions (pulse current, pulse duration) in the fixed cycle was developed and its effect were investigated for aluminium and its alloy. By using this new welding process, the bead appearance having clear ripple pattern, such as TIG welding bead can be obtained and the gap tolerance of lap and butt welding joint can be expanded.

  • PDF

Study on the Fluidized Bed Drying of Grains (1) - Fluidization charcteristics of Rough Rice - (곡류의 유동층 건조에 관한 연구 (1))

  • Hur, Jong-Wha;Suh, Gil-Duk
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.13 no.3
    • /
    • pp.168-182
    • /
    • 1984
  • For the purpose of drying high moisture rough rice effectively, from the view point of pre-drying, some basic experiments of fluidized bed drying of rough rice were carried out. The minimum fluidization velocities $(U_{mf})$ for both rough rice and glass bead were analyzed to find out fluidizing characteristics. The main results obtained were as follows ; 1) Minimum fluidization velocity of rough rice and glass bead were 2.01m/s and 4.07m/s, respectively, when using the distributor with $16\%$ opening ratio. 2) $U_{mf}$ calculated by Shirai's empirical equation and that calculated by Wen's modified equation were inconsistent with experimental data, while $U_{mf}$ calculated by Ergun's equation was consistent with the experimental data. 3) The following equations, on the basis of Leva's equation, were obtained. $$C_{mf}=1.19\times10^{-4}(Re_p)^{-0.0318)\;(rough rice)$$ $$C_{mf}=1.02imes10^{-4}(Re_p)^{-0.0047)\;(glass bead)$$

  • PDF

Modelling of Bead Geometry for GMA Welding Process Using FEM (FEM을 이용한 GMA 용접공정의 비드형상 모델링)

  • 정영재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.298-303
    • /
    • 1997
  • Over the last few year, there has been a growing interest in quantitative representation of heat transfer phenomena in weld pools in order to relate the processing conditions to the quality of the weldment produced and to use this information for the optimisation and robotization of the welding process. Normally, a theoretical model offers a powerful alternative to check out the physical concepts of the welding process and to calculate the effects of varying any of parameters. To solve this problem, a transient 2D(two-dimensional) heat conduction were developed for determining bead geometry and temperature distribution for the GMA welding process. The equation was solved using a general thermofluid-mechanics computer program, PHOENICS code, which is based on the SIMPLE algorithm. The simulation results showed that the calculated bead geometry from the developed models reasonablely agree with the experiment results.

  • PDF

Fluidized Bed Drying Effect on the Aerogel Powder Synthesis

  • Hong, Seong-Hoon;Lee, Dong-Kyu;Oh, Chang-Sup;Kim, Yong-Ha
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.43-46
    • /
    • 2012
  • A fluidized bed drying approach was utilized to the synthesis of water glass based silica aerogel powders. The effects of the fluidized bed drying conditions such as the superficial velocity and temperature of hot air and bead size as well as bead/wet-gel ratio, on the physical properties such as tapping density and productivity of the aerogel powders were systematically investigated. The experimental results showed that the amount of beads mixed with wet-gels in the fluidized bed column has the most profound impact on the fluidization efficiency, greatly enhancing the yield of the aerogel powders up to 98% with a proper bead/wet-gel weight ratio as compared to 72% without using beads. No significant change was observed in the tapping density over a wide range of the fluidized drying condition. Consequently the fluidized bed drying approach shows a good promise as an alternative route for the large-scale production of the aerogel powders.

The Study for Bead Effect in Inner Case on Thermal Deformation of Refrigerator (냉장고 내벽의 비드가 열변형에 미치는 영향에 관한 연구)

  • Zhai, JianGuang;Cho, Jong-Rae;Jeon, Woo-Jin;Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.96-101
    • /
    • 2011
  • Under extreme test or operation condition, refrigerator endures complicated stresses state and thermal bowing deformation arises on the sidewall. Shelf rails designed in the inner case provide increased surface area to permit expansion without bowing, and also increase structural rigidity to resist bowing. In this study, we designed six different shelf patterns of refrigerator model and studied the bead on refrigerator deformation using finite element method (FEM). Analysis result shows that increasing the numbers of beads properly in refrigerator is more helpful to reduce thermal bowing deformation. In addition, the beads would decrease stress on refrigerator sidewall. However, vertical beads have no effect to reduce thermal deformation of the bowing.

Enhancement and Evaluation of Fatigue Resistance for Spine Fixation System (척추고정장치의 피로성능 평가와 향상)

  • Kim, Hyun-Mook;Kim, Sung-Kon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.142-147
    • /
    • 2009
  • Spinal fixation systems provide surgical versatility, but the complexity of their design reduces their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. A group of two assemblies was tested in static compression. One group was applied to surface a grit blasting method and another group was applied to surface a bead blasting method. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six assembles. Static compression 2% offset yield load ranges was from 327 to 419N. Fatigue loads were determined two levels, 37.5% and 50% of the average load from static compression ultimate load. An assembly of bead blasting treatment only achieved 5 million cycles at 37.5% level in compression bending.

Design of the Bead Force and Die Shape in Sheet Metal Forming Processes Using a Rigid-plastic Finite Element Method and Response Surface Methodology (강소성 유한요소법과 반응표면분석법을 이용한 박판성헝 공정에서의 비드력 및 다이형상의 설계)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.284-292
    • /
    • 2000
  • Optimization of the process parameters is carried out for process design in sheet metal forming processes. The scheme incorporates with a rigid-plastic finite element method for the deformation analysis and response surface methodology for the optimum searching of process parameters. The algorithm developed is applied to design of the draw bead force and the die radius in deep drawing processes of rectangular cups. The present algorithm shows the capability of designing process parameters which enable the prevention of the weak part of fracture during processes.

  • PDF

Heat Source Modeling of Laser Keyhole Welding: Part 1-Bead Welding (레이저 키홀 용접의 열원 모델링: Part 1-비드 용접)

  • Lee Jae-Young;Lee Won-Beom;Yoo Choong-Don
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.48-54
    • /
    • 2005
  • Laser keyhole welding is investigated using a three-dimensional Gaussian heat source, and the heat source parameters such as the keyhole depth, welding efficiency and power density distribution factor are determined in a systematic way. For partial penetration, the keyhole depth is same as the penetration and is predicted using the experimental data. The welding efficiency is calculated using the ray-tracing method and the power density distribution factor is determined from the bead shape. Full penetration is classified into the transition, normal and excessive modes depending on the degree of keyhole opening. Thermal analysis of the bead-on-plate welds is conducted using the Gaussian heat source, and the calculated weld geometries show reasonably good agreements with the experimental results.

Fatigue Characteristics of SM490A Welded Joints for Bogie Frame (대차 프레임용 SM490A 용접재의 피로 특성 평가)

  • Park Jae Sil;Seok Chang Sung;Koo Jae Mean;Shin Jae Ho;Goo Byeong Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.146-153
    • /
    • 2004
  • We compared the fatigue characteristics of weld metal with those of base metal, and not heat-treated with heat-treated. Also, we examined the influence of bead in a viewpoint of fatigue life. From the experimental results, it has been seen that the fatigue characteristics of welded specimens grinded the toe of bead are slightly better than not grinded. We have seen that the fatigue life is affected more by the stress concentration on the profile change in the weld toe rather than by residual stress influence, because heat-treated or not had almost no influence on the fatigue characteristics.

The Low Cycle Fatigue behavior of Laser Welded Sheet Metal (박판형 레이저 용접재의 저주기 피로 특성)

  • 김웅찬;곽대순;김석환;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1025-1028
    • /
    • 2004
  • In this paper, we studied low cycle fatigue behavior of laser welded sheet metal that used automobile body panel. Specimens were manufactured as weld condition and sheet metal using automobile manufacturing company at present. For to know mechanical properties, micro Vicker's hardness test was performed of specimens. But, we can't confirm mechanical properties of weld bead and heat affected zone because laser weld makes very narrow weld bead and heat affected zone than other welding method. Therefore, we performed low cycle fatigue test with similar weldment, dissimilar weldment, similar thickness and dissimilar weldment, and dissimilar thickness and dissimilar weldment for fatigue properties of thickness and welding direction. As well, we analysis stress distribution of base metal, weld bead, and heat affected zone according to strain load using finite element method.

  • PDF