Recently, the abuse of Internet technology has caused economic and mental harm to society as a whole. Especially, malicious code that is newly created or modified is used as a basic means of various application hacking and cyber security threats by bypassing the existing information protection system. However, research on small-capacity executable files that occupy a large portion of actual malicious code is rather limited. In this paper, we propose a model that can analyze the characteristics of known small capacity executable files by using data mining techniques and to use them for detecting unknown malicious codes. Data mining analysis techniques were performed in various ways such as Naive Bayesian, SVM, decision tree, random forest, artificial neural network, and the accuracy was compared according to the detection level of virustotal. As a result, more than 80% classification accuracy was verified for 34,646 analysis files.
The Korean Demilitarized Zone (DMZ) has the great ecosystem as all the artificial activities in DMZ have been prohibited over half a century. The ecosystem should be conserved even after the reunification of Korea and hence the conservation plan should be established not after the reunification but before it. It requires a considerable budget to conserve DMZ, considering management of ecology resource, recovery, and research. The objective of this paper is to analyze a fund-raising measure for DMZ conservation, using economic incentives mechanism when multiple developers participate in the auction to get the right to develop North Korean regions, have private information about their sunk costs and pay a part of their profits for the fund. First, we analyze the real option model to decide the optimal investment time. Second, we construct the auction for bidders not to misrepresent their private information, based on Bayesian Nash equilibrium.
Seo, Jiyu;Won, Jeongeun;Choi, Jeonghyeon;Kim, Sangdan
Journal of Korean Society on Water Environment
/
v.37
no.3
/
pp.204-216
/
2021
It is important to understand the factors influencing the temporal and spatial variability of water quality in order to establish an effective customized management strategy for contaminated aquatic ecosystems. In this study, the spatial diversity of the 5-year (2015 - 2019) average total phosphorus (TP) concentration observed in 40 Total Maximum Daily Loads unit-basins in the Nakdong River watershed was analyzed using 50 predictive variables of watershed characteristics, climate characteristics, land use characteristics, and soil characteristics. Cross-correlation analysis, a two-stage exhaustive search approach, and Bayesian inference were applied to identify predictors that best matched the time-averaged TP. The predictors that were finally identified included watershed altitude, precipitation in fall, precipitation in winter, residential area, public facilities area, paddy field, soil available phosphate, soil magnesium, soil available silicic acid, and soil potassium. Among them, it was found that the most influential factors for the spatial difference of TP were watershed altitude in watershed characteristics, public facilities area in land use characteristics, and soil available silicic acid in soil characteristics. This means that artificial factors have a great influence on the spatial variability of TP. It is expected that the proposed statistical modeling approach can be applied to the identification of major factors affecting the spatial variability of the temporal average state of various water quality parameters.
Dam, Roos Sophia de Freitas;dos Santos, Marcelo Carvalho;do Desterro, Filipe Santana Moreira;Salgado, William Luna;Schirru, Roberto;Salgado, Cesar Marques
Nuclear Engineering and Technology
/
v.53
no.7
/
pp.2334-2340
/
2021
Radioactive particle tracking (RPT) is a minimally invasive nuclear technique that tracks a radioactive particle inside a volume of interest by means of a mathematical location algorithm. During the past decades, many algorithms have been developed including ones based on artificial intelligence techniques. In this study, RPT technique is applied in a simulated test section that employs a simplified mixer filled with concrete, six scintillator detectors and a137Cs radioactive particle emitting gamma rays of 662 keV. The test section was developed using MCNPX code, which is a mathematical code based on Monte Carlo simulation, and 3516 different radioactive particle positions (x,y,z) were simulated. Novelty of this paper is the use of a location algorithm based on a deep learning model, more specifically a 6-layers deep rectifier neural network (DRNN), in which hyperparameters were defined using a Bayesian optimization method. DRNN is a type of deep feedforward neural network that substitutes the usual sigmoid based activation functions, traditionally used in vanilla Multilayer Perceptron Networks, for rectified activation functions. Results show the great accuracy of the DRNN in a RPT tracking system. Root mean squared error for x, y and coordinates of the radioactive particle is, respectively, 0.03064, 0.02523 and 0.07653.
This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.
Objectives: We aimed to estimate the space-time distribution of the risk of suicide mortality in Iran from 2006 to 2016. Methods: In this repeated cross-sectional study, the age-standardized risk of suicide mortality from 2006 to 2016 was determined. To estimate the cumulative and temporal risk, the Besag, York, and Mollié and Bernardinelli models were used. Results: The relative risk of suicide mortality was greater than 1 in 43.0% of Iran's provinces (posterior probability >0.8; range, 0.46 to 3.93). The spatio-temporal model indicated a high risk of suicide in 36.7% of Iran's provinces. In addition, significant upward temporal trends in suicide risk were observed in the provinces of Tehran, Fars, Kermanshah, and Gilan. A significantly decreasing pattern of risk was observed for men (β, -0.013; 95% credible interval [CrI], -0.010 to -0.007), and a stable pattern of risk was observed for women (β, -0.001; 95% CrI, -0.010 to 0.007). A decreasing pattern of suicide risk was observed for those aged 15-29 years (β, -0.006; 95% CrI, -0.010 to -0.0001) and 30-49 years (β, -0.001; 95% CrI, -0.018 to -0.002). The risk was stable for those aged >50 years. Conclusions: The highest risk of suicide mortality was observed in Iran's northwestern provinces and among Kurdish women. Although a low risk of suicide mortality was observed in the provinces of Tehran, Fars, and Gilan, the risk in these provinces is increasing rapidly compared to other regions.
Kim, Shin-Jeong;Oh, Se-Heon;Kim, Minsu;Park, Hye-Jin;Kim, Shinna
The Bulletin of The Korean Astronomical Society
/
v.46
no.2
/
pp.70.1-70.1
/
2021
We examine the HI gas kinematics and distributions of galaxy pairs in group or cluster environments from high-resolution Australian Square Kilometer Array Pathfinder (ASKAP) WALLABY pilot observations. We use 32 well-resolved close pair galaxies from the Hydra, Norma, and NGC 4636, two clusters and a group of which are identified by their spectroscopy information and additional visual inspection. We perform profile decomposition of HI velocity profiles of the galaxies using a new tool, BAYGAUD which allows us to separate a line-of-sight velocity profile into an optimal number of Gaussian components based on Bayesian MCMC techniques. Then, we construct super profiles via stacking of individual HI velocity profiles after aligning their central velocities. We fit a model which consists of double Gaussian components to the super profiles, and classify them as kinematically cold and warm HI gas components with respect to their velocity dispersions, narrower or wider 𝜎, respectively. The kinematically cold HI gas reservoir (M_cold/M_HI) of the paired galaxies is found to be relatively higher than that of unpaired control samples in the clusters and the group, showing a positive correlation with the HI mass in general. Additionally, we quantify the gravitational instability of the HI gas disk of the sample galaxies using their Toomre Q parameters and HI morphological disturbances. While no significant difference is found for the Q parameter values between the paired and unpaired galaxies, the paired galaxies tend to have larger HI asymmetry values which are derived using their moment0 map compared to those of the non-paired control sample galaxies in the distribution.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.79-79
/
2021
기상학적 측면에서 강수 부족으로 인한 수생태환경(하천), 호소환경(저수지) 및 유역환경(중권역)으로 미치는 환경학적 가뭄의 영향을 평가하기 위한 시도는 매우 중요하다. 만약 동일한 규모의 강수부족 현상이 발생할지라도, 환경적 측면에서의 수질 및 수생태에 미치는 영향이 매우 큰 유역이 있고, 반면 어느 정도의 복원력을 유지할 수 있는 유역이 있을 것이다. 즉, 서로 다른 유역환경에 따라 가뭄으로 인한 환경적 영향은 달라질 가능성이 크며, 이처럼 환경적 가뭄에 취약한 지역을 위해서는 지속적인 환경가뭄 모니터링이 중요하다. 환경적 측면에서 가뭄의 영향을 평가하기 위해서는 다양한 수질 관련 항목을 연계한 환경가뭄 감시가 중요하며, 이와 더불어 가뭄과 관련한 다양한 이해관계자 간의 효율적인 의사결정 도구가 필요하다. 따라서 본 연구에서는 다양한 시나리오 정보를 제공할 수 있는 베이지안 네트워크 모형을 적용하여 환경가뭄 민감도 평가 방안을 제시하고자 한다. 본 모형에서는 수질 문제가 가장 심하게 대두되고 있는 낙동강 유역을 대상으로, 기상학적 가뭄에 의한 수생태 및 환경 관련 변수들(BOD, T-P, TOC)의 복잡한 상호의존성을 파악할 수 있는 베이지안 네트워크 모형을 활용하였다. 또한, 기상학적 가뭄에 의한 상류와 하류 간의 환경적 영향을 연계하여 해석하기 위한 모형을 구축하였다. 그 결과, 기상학적 가뭄으로 인한 환경적 민감도가 크게 나타나는 중권역(예: 임하댐유역)과 이와 반대인 중권역(예: 병성천유역)의 구분이 가능하였다. 또한, 상류에서 발생한 심한 기상학적 가뭄이 하류 지역 내 환경적인 영향을 지속할 가능성이 있음을 확인되었다. 따라서 본 연구에서 제안한 방법은 환경적 가뭄의 취약지역을 우선 선정하고, 나아가 상-하류 간의 환경적 가뭄을 감시하는 데 있어 활용도가 있을 것으로 기대된다.
This study describes consumers' movie choices in conjunction with other group members and attempts to reassess the effect of the online word of mouth (WOM) source in a joint decision context. The tendency of many people to go to movies in groups has been mentioned in previous literature but there is no modeling research that studies movie choice from the group decision perspective. We found that ignoring the group movie-going perspective can result in a misunderstanding, especially underestimation of genre preference and the impact of the WOM variables. Most of the studies to measure online WOM effects were done at the aggregate level, and the role of online WOM variables(volume vs valence) is mixed in the literature. We postulate that group-level analysis might offer insight to resolve these mixed understanding of WOM effects in the literature. We implemented the study via a random effect model with group-level heterogeneity. Romance, drama, and action were selected as genre variables; valence and volume were selected as online WOM variables. A choice-based conjoint survey was used for data collection and the models was estimated via Bayesian MCMC method. The empirical results show that (i) both genre and online WOM are important variables when consumers choose movies, especially as group, and (ii) the WOM valence effect are amplified more than the volume effect does as individuals are engaged in group decision. This research contributes to the literature in several ways. First, we investigate movie choice from a group movie-going perspective that is more realistic and consistent with the market behavior. Secondly, the study sheds new light on the WOM effect. At group-level, both valence and volume significantly affect movie choices, which adds to the understanding of the role of online WOM in consumers' movie choice.
Joon-Ki Hong;Yong-Min Kim;Eun-Seok Cho;Jae-Bong Lee;Young-Sin Kim;Hee-Bok Park
Animal Bioscience
/
v.37
no.4
/
pp.622-630
/
2024
Objective: Pig breeders cannot obtain phenotypic information at the time of selection for sow lifetime productivity (SLP). They would benefit from obtaining genetic information of candidate sows. Genomic data interpreted using deep learning (DL) techniques could contribute to the genetic improvement of SLP to maximize farm profitability because DL models capture nonlinear genetic effects such as dominance and epistasis more efficiently than conventional genomic prediction methods based on linear models. This study aimed to investigate the usefulness of DL for the genomic prediction of two SLP-related traits; lifetime number of litters (LNL) and lifetime pig production (LPP). Methods: Two bivariate DL models, convolutional neural network (CNN) and local convolutional neural network (LCNN), were compared with conventional bivariate linear models (i.e., genomic best linear unbiased prediction, Bayesian ridge regression, Bayes A, and Bayes B). Phenotype and pedigree data were collected from 40,011 sows that had husbandry records. Among these, 3,652 pigs were genotyped using the PorcineSNP60K BeadChip. Results: The best predictive correlation for LNL was obtained with CNN (0.28), followed by LCNN (0.26) and conventional linear models (approximately 0.21). For LPP, the best predictive correlation was also obtained with CNN (0.29), followed by LCNN (0.27) and conventional linear models (approximately 0.25). A similar trend was observed with the mean squared error of prediction for the SLP traits. Conclusion: This study provides an example of a CNN that can outperform against the linear model-based genomic prediction approaches when the nonlinear interaction components are important because LNL and LPP exhibited strong epistatic interaction components. Additionally, our results suggest that applying bivariate DL models could also contribute to the prediction accuracy by utilizing the genetic correlation between LNL and LPP.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.