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a b s t r a c t

Radioactive particle tracking (RPT) is a minimally invasive nuclear technique that tracks a radioactive
particle inside a volume of interest by means of a mathematical location algorithm. During the past
decades, many algorithms have been developed including ones based on artificial intelligence tech-
niques. In this study, RPT technique is applied in a simulated test section that employs a simplified mixer
filled with concrete, six scintillator detectors and a137Cs radioactive particle emitting gamma rays of
662 keV. The test section was developed using MCNPX code, which is a mathematical code based on
Monte Carlo simulation, and 3516 different radioactive particle positions (x,y,z) were simulated. Novelty
of this paper is the use of a location algorithm based on a deep learning model, more specifically a 6-
layers deep rectifier neural network (DRNN), in which hyperparameters were defined using a Bayesian
optimization method. DRNN is a type of deep feedforward neural network that substitutes the usual
sigmoid based activation functions, traditionally used in vanilla Multilayer Perceptron Networks, for
rectified activation functions. Results show the great accuracy of the DRNN in a RPT tracking system. Root
mean squared error for x, y and coordinates of the radioactive particle is, respectively, 0.03064, 0.02523
and 0.07653.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nuclear techniques based on gamma densitometry are mini-
mally invasive and do not need to interrupt operational plant
conditions. These techniques are widely used in several areas such
as: volume fraction calculations [1]; flow measurements [2e8];
monitoring petroleum by-products [9,10]; and density prediction
[11e13]. Therefore, radioactive particle tracking (RPT) is a nuclear
technique that has been used for many years with different pur-
poses. RPT is based on tracking a radioactive particle that emits
gamma radiation inside a recipient of interest, which is filled with
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certain materials (gas, liquid or solid flows). In order to track the
radioactive particle, it is necessary to have an array of detectors and
a location algorithm. RPT systems allow the study of fluidized beds
[14e17], bubble columns reactors [18e22], conical spouted bed
[23], concrete mixers [24,25], among others.

The RPT detection system depends on some factors, in which it
is possible to highlight: gamma ray and source activity; interaction
of gamma ray with matter (Compton scattering, photoelectric ab-
sorption); solid angle of the detector; detection efficiency; photo-
peak fraction and dead time [26]. In addition, the performance of a
RPT system is directly related to the characteristics of the radio-
nuclide chosen as a radioactive particle, such as: purity; activity;
half-life; and gamma ray energy [26]. Therefore, the choice of the
radionuclide is of great importance. Some of the radionuclides re-
ported in the literature are 46Sc (889.28 keV and 1120.54 keV)
[15,16,19,21] and 198Au (411.80 keV) [16].

Moreover, to track que radioactive particle, the RPT location
algorithm converts the detector counts as a function of the
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radioactive particle coordinates (x, y, z). Over the last few decades,
many traditional location algorithms have been developed
[14,15,17,18,27e29]. In addition, the development of algorithms
based on artificial intelligence (AI) techniques have also been
explored [16,22,24,25].

AI techniques, such as artificial neural networks (ANN), have
been used in different fields of research. The use of ANN makes it
possible to study multiphase reactors [16], volume fractions
[30e34], inorganic scale in oil pipelines [35], fluid density
[12,13,36], predict radiation dose [37], predict radioactive particle
position [22,24,25].

In a great part of these studies, ANN models with few internal
processing layers or few processing units were utilized. Therefore,
as presented in the literature [38,39], although these ANN models
presented satisfactory results in some of these studies, in robust
problems with extensive datasets, the ANN models tend to present
inferior learning and generalization capability than more elabo-
rated ANN models, which nowadays are called deep learning (DL)
models. These DL models are deep neural networks (DNNs) archi-
tectures that contain multiple internal processing layers with
hundreds or thousands of processing units. Especially in more
complex problems, the DNNs performance stands out in compari-
sonwith the simple ANNs, where a large dataset, with thousands of
examples, is necessary to cover the entire search space of the
problem.

Although the DNNs have superior performance inmore complex
problems, for a long time the use was limited due to factors as:
small quantity of data to train the models, limited hardware pro-
cessing capacity to run the models and DNN architectures with
inference training capacity. However, in the last decade these bar-
riers were overcome, due to the large amount of easily accessible
data available now, the use of parallel computing based on Graphic
Processor Units (GPUs) to train the models, and the new more
efficient DNN architectures. Therefore, in the recent years, DL
models have been used to solve problems of pattern recognition
with greater accuracy and faster training time. In such a way,
studies in the nuclear field are already using DNNs in order to
inspect structural components of nuclear power plants (NPPs) [40],
analysis of reactor cores perturbation [41], detect fault/anomalies in
NPPs [42], predict radiation dose [43] and identify accidents in
NPPs [44,45].

Based on this, the study here presented proposes a simulated
test section that consists of amixer filled with concrete that is made
with Portland cement, six NaI(Tl) scintillator detectors and a137Cs
Fig. 1. Representation of the RPT simulated system.
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(662 keV) radioactive particle with isotropic emission of gamma
rays. In previous research, R.S.F. Dam et al. (2019) proposed the use
of a simple feed-forward ANN architecture, more specifically a
Multilayer Perceptron (MLP) activated with sigmoid functions, as a
location algorithm and used a dataset with 108 patterns to train
and test the neural network [24]. The novelty of the present study is
the use of a DL model, more specifically deep rectifier neural
network (DRNN) [46], as a location algorithm, and the use of a
dataset with 3516 patterns to train and test the DRNN, in order to
improve precision in RPT technique. The simulated model was
developed using MCNPX code [47] in order to generate data to feed
the DRNN.

2. The deep artificial neural network architecture

Artificial neural networks are mathematical models originally
inspired by the functioning of the human brain, in which the main
characteristic is the ability to learn by examples andmodel complex
non-linear relationships amongst these examples [48]. The ANNs
basically operate in two phases:

� Training/Learning phase: The ANN receives raw data, (a finite
set of information, examples about a particular problem or sit-
uation) as input, transform it into an appropriate internal rep-
resentation (features vector) and use it to automatically learn
the main patterns of that better represents input data;

� Operating phase: The ANN extrapolates the knowledge acquired
during the learning process and is able to respond to new sit-
uations that are similar to the ones presented in the training.

In order to learn the representation of the information present
in the raw data the ANNs use a hierarchical learning (layers of
learning) approach. Therefore, the neural networks are composed
of several inter-connected hidden layers of non-linear parameter-
ized processing units (neurons) that have trainable parameters.
Starting from the input layer, that receives the input signal (raw
data), each successive hidden layer transforms the signal, via its
neurons, and with the number of enough parameterized trans-
formations, the network can learn to represent very complex non-
linear relationships in the inputs [49e51].

Since the quantity of hidden layers and neurons defines the
number of parameterized transformations an input signal en-
counters as it propagates through the network, the number of
hidden layers and neurons is an important aspect when designing
an ANN, considering that it can determine the learning capacity of
the ANN. Thus, there is a substantial difference in learning capacity
between DNNs, which are ANNs architectures with many neurons
and hidden layers, and the Shallow Neural Networks (SNNs), which
are ANNs architectures with few neurons and hidden layers.
Generally, the DNNs have more than one hidden layer (usually
between 2 and 10), and have the ability to representing and
learning complex functions far more efficiently than the SNNs, that
have only one hidden layer [38,49e51].

Furthermore, one of the main aspects of DNNs is the non-linear
and differentiable activation function utilized to activate the neu-
rons of the hidden layers, since without this type of function the
network would be able to work only with linear problems. For a
long time, the sigmoid functions (as the logistic sigmoid) were the
most used activation functions option, including for DNNs archi-
tectures as theMLP (also called Deep Feedforward Neural Networks
(DFNN)). However, in the literature it was pointed out a problem
with this approach: DNNs with more than four hidden layers
whose implement sigmoid functions tend to present a suffered
performance, converging more slowly and apparently towards ul-
timately poorer local minima [52].



Fig. 2. Patterns used in Training, Validation and Test sets: a) slice where z ¼ 0 cm; b) slice where z ¼ �25 cm.

Table 1
Metrics used in order to evaluate the DRNN results.
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Due to this, a novel DNN architecture was proposed replacing
the sigmoid functions for rectifier linear functions, thus receiving
the name of Deep Rectifier Neural Network (DRNNs) [46]. The re-
sults of these experiments showed that DRNNs have a better per-
formance than sigmoid activated DNNs, in such a way that the
authors consider it to be a new milestone in the performance of
DNNs when applied to supervised learning problems [46]. Recent
cases in the literature, including ones in the nuclear areas, further
demonstrated that the DRNN is a DNN model superior, in precision
and training time, when compared with traditional MLPs activated
with sigmoid functions [43e45,53] in a supervising learning task.

Therefore, considering the aspects pointed, the DNN model
selected to deal with RPT tracking problem presented in this study
was the DRNN.

3. Methodology

3.1. Radioactive particle tracking simulated system

The RPT system simulated with the MCNPX code [47] consists of
a polyvinyl chloride (PVC) mixer, six 200x200 NaI(Tl) detectors and a
radioactive particle. The mixer has 20 cm of diameter, 55 cm of
length and it is filled with concrete made with Portland cement
(density ¼ 2.3 g cm�3). The weight fractions of the concrete are
available in the MCNPX compendium of materials [54]. The radio-
active particle used in this study is a 662 keV point source with
isotropic emission of gamma rays, representing 137Cs radioisotope.
In the simulations, the radioactive particle was placed in 3516
2336
different positions within the mixer. Outside of the mixer, the de-
tectors were placed in two planes (P1 and P2) perpendicular to the
z-axis and the distance between these planes is 25 cm. Fig. 1 rep-
resents the simulated geometry.

In Fig. 1, “U” represents solid angle of the NaI(Tl) detectors.
Upper plane (P1) has three detectors placed making a 120� angle
between each other. Same detector distribution occurs for lower
plane (P2). The distance between the detectors and the mixer is
20 cm. The simulated detectors are considered a homogeneous
cylinder [55,56] and they consist of a NaI(Tl) crystal, surrounded by
a reflective layer composed by magnesium oxide (MgO) and an
outer aluminum (Al) layer, similarly to previous study [24].

In the MCNPX code input file, for calculations purposes, it is
necessary to describe all the materials, with information such as
density and weight fractions, and these information are available in
the compendium of materials [54]. In the output file of the MCNPX
code, tally card F8 gives the simulation response that represents the
pulse height distribution (PHD) in each detector. The PHD was
divided in 80 channels and each one has 10 keV of energy. The 67th
channel corresponds to the photoelectric absorption region (pho-
topeak), which is the area of interest in this study. In order to
ensure that the relative error remains below 3% in the photopeak of
all detectors, 3E8 number of histories (NPS) was chosen. The results
of the MCNPX code were normalized to the source activity in the
number of photons. It is worth mentioning that detection efficiency
is considered the same in all detectors. The counts registered in the
photopeak region were used in order to train the DRNN, however
energy resolution was not considered in this study.
3.2. Location algorithm based on deep rectifier neural network

3.2.1. Dataset preparation
Using the simulated RPT system described in section 3.1, a

dataset containing 3516 patterns was developed in the MCNPX
code. Each pattern is formed by six inputs features representing the
photopeak region of six detectors and three outputs targets cor-
responding to the radioactive particle instantaneous positions
(x,y,z) within the mixer. Moreover, in these radioactive particle
positions, the x, y and z coordinates range are, respectively, from�9
to 9 cm, �9 to 9 cm (both with a step of 1 cm) and �40 to 15 cm
with a step of 5 cm.

In order to realize the experiments with the DRNN models the
original dataset was divided into three subsets: training and



Fig. 3. 3D trajectories inside the mixer: a) spiral; b) square spiral.

Fig. 4. Slices of spiral trajectory: a) z ¼ �40 cm; b) z ¼ �25 cm.

Fig. 5. Slices of square spiral trajectory: a) z ¼ �40 cm; b) z ¼ �25 cm.

Table 2
DRNN metrics using training, validation and test sets.

Metrics Coordinates

X Y Z

MAE 0.02314 0.01898 0.03642
MSE 0.00094 0.00064 0.00586
RMSE 0.03064 0.02523 0.07653
R2 0.99996 0.99997 0.99998

Table 3
DRNN metrics using test set.

Metrics Coordinates

X Y Z

MAE 0.02642 0.02156 0.05304
MSE 0.00130 0.00086 0.01588
RMSE 0.03601 0.02927 0.12602
R2 0.99994 0.99996 0.99995
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validation sets, to be used during the learning phase of the network,
and a test set, to evaluate the performance DRNN in the operation
2337
phase. Learning phase consists of, approximately, 60% (Training set)
and 10% (Validation set) of the original dataset and operation phase



Fig. 6. Metrics: a) Absolute Error; b) Relative Error.
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(Test set) consists of the remaining 30% of the original set. Fig. 2
shows slices of the RPT system, where z ¼ 0 cm and z ¼ �25 cm,
in order to highlight patterns used in Training, Validation and Test
sets.

Furthermore, to improve the performance of the DRNNs in the
learning phase, the data patterns have been normalized according
to Equation (1).

XN ¼ðX � X�Þ
S

(1)

Where XN is the normalized value; X is the original value; X�is the
average and S is the standard deviation.
3.2.2. The DRNN model design process
Currently, a great part of the work in designing an ANN, as the

DRNN, for a specific case is based on the specialist knowledge,
taking in the account factors as the type of the problem (classifi-
cation, regression, and forecasting) and the dataset characteristics
(number of patterns for training and testing, the number of input
features and output targets). Usually, the specialist, via a trial and
error approach, manually defines the best hyperparameters (such
as the number of layers, the number of neurons in each layer, and
the activation function) for an ANN for the specific problem.
Therefore, one of the main challenges when working with ANNs is
the definition of hyperparameters. Due to this, some researches
have been studying automated methods for this hyperparameters
search task as: Random Search [57]; Robust Design of Artificial
Neural Networks (RDANN) [58] and Bayesian optimization [59e61].

Therefore, in this study, the Bayesian optimization method was
utilized to improve the process of design a DRNN for the RPT
tracking problem. In order to implement the method, the Python
hyperparameter optimization library Hyperas [62] was used and
the following set of hyperparameters and their ranges were defined
for the automated search process:

C Number of Hidden Layers: from 1 to 10 with a step of 1;
C Number of Neurons in the Hidden Layers: from 100 to 1000

with a step of 100;
C Hidden Layers Activation Function: Rectified linear unit

(ReLu) [52] or Exponential linear unit (Elu) [63].

Other hyperparameters were defined manually:

C Optimizer: Adam [64];
C Error Function: Mean Squared Error (MSE);
C Number of Epochs: 4000;
C Batch Size: 32.
2338
As a result of this process, a DRNN model with following char-
acteristics achieved the smallest MSE in the test set:

C Number of Hidden Layers: 4;
C Number of Neurons in the Hidden Layers: [300, 300, 900,

1000];
C Hidden Layers Activation Function: [Elu, Elu, Elu, Elu].

Mathematical evaluation of the DRNN results will be made
through well-known metrics such as Relative Error (RE), Absolute
Error (AE), MSE, Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE). Definition of the metrics are in Table 1. It is
important to note that, in the following equations, N is the number
of data, Ptrue is the real value given by MCNPX code and PANN is the
predicted value by the ANN.

4. Results and discussions

In this section, the results achieved with the six layers DRNN (6-
DRNN) model, described in section 3.2, for the RPT tracking prob-
lem, represented by the dataset defined in section 3.1, are pre-
sented. One of the possibilities when using RPT technique inmixers
is to track the radioactive particle trajectory in order to evaluate
how the flow is homogenized inside the mixer. Two 3D trajectories
of the radioactive particle were tracked inside the mixer as follows
Fig. 3. In both trajectories, it is possible to compare real data
(simulated) with predicted data (6-DRNN).

In order to complement the view of real data and predicted data,
Fig. 3a and b were sliced along z-axis. Two slices of each trajectory
are shown in Fig. 4 and Fig. 5.

It is possible to observe, in Figs. 3, Figs. 4 and 5, that predicted
data follows real data almost perfectly, which means that the
location algorithm based on deep learning has a great precision in
RPT tracking problems.

On this basis, to exemplify mathematically the performance of
the DRNN, Table 2 presents the metrics using training, validation
and test sets, which contains 3516 patterns. The results of the
following metrics indicates the good convergence of the DRNN in
this RPT system. Moreover, R2 is the regression coefficient and its
results indicate that predicted coordinates values are close to real
values.

Since the test set contains patterns that were not included in the
learning phase of the ANN models, it makes the ideal choice to
evaluate the generalization capability of these models. In this way,
Table 3 shows the performance of the DRNN on the test set, which
contains 1055 patterns.

When observing the metrics from test set and learning phase
(training and validation sets) it is possible to note that the results
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are similar, which indicates that the DRNN was capable of gener-
alize the knowledge acquired during the learning phase.

Aiming to visualize the behavior of the metrics along the entire
dataset (3516 patterns), Fig. 6 shows AE and RE. It is possible to
observe that most of the patterns, for x, y and z coordinates, are
around ±0.025 of RE. Furthermore, the patterns are between �1.0
and 2.0 of AE, meanwhile the patterns are between �0.15 and 0.15
of RE. These results show that, in the most of the patterns, the er-
rors are close to zero (the acceptable error range is delimited by
black lines) and it shows how accurate the DRNNmodel can be in a
RPT tracking system.

5. Conclusions

This study proposes the use of a novel RPT algorithm based on a
deep learning model, more specifically a 6-layer deep rectifier
neural network (DRNN). This algorithm was applied in a simulated
test section that represents a simplified model of a mixer sur-
rounded by six NaI(Tl) detectors in order to predict the radioactive
particle position (x, y, z). Simulations were carried out using
MCNPX code, which is based on Monte Carlo method, enabling the
determination of an appropriate detection system in the early
phase of the research. The results achieved by the DRNN presents
RMSE for x, y and z coordinated, respectively, 0.03064, 0.02523 and
0.07653. The results of themetrics showed the great accuracy of the
DRNN, which makes it a great tool in order to evaluate RPT tracking
systems.
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