• Title/Summary/Keyword: bayesian decision theory

Search Result 23, Processing Time 0.035 seconds

Water Resources Development Model by Using Bayesian Theory (베이지안 기법을 이용한 수자원개발 모델)

  • Kim, Jee-Hak;Bae, Young-Ju
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.1
    • /
    • pp.72-82
    • /
    • 1991
  • This study deals with the problem of water resources development by using bayesian theory. The purpose of this study is to develop the optimal decision model by applying bayesian theory which determine the optimal alternative in water resources development system. A relevant mathematical model to find an optimal solution formulated and then used in developing an efficient water resources that determine optimal alternative. A numerical example is solved to illustrate the algorithm developed.

  • PDF

Optimal Network Defense Strategy Selection Based on Markov Bayesian Game

  • Wang, Zengguang;Lu, Yu;Li, Xi;Nie, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5631-5652
    • /
    • 2019
  • The existing defense strategy selection methods based on game theory basically select the optimal defense strategy in the form of mixed strategy. However, it is hard for network managers to understand and implement the defense strategy in this way. To address this problem, we constructed the incomplete information stochastic game model for the dynamic analysis to predict multi-stage attack-defense process by combining Bayesian game theory and the Markov decision-making method. In addition, the payoffs are quantified from the impact value of attack-defense actions. Based on previous statements, we designed an optimal defense strategy selection method. The optimal defense strategy is selected, which regards defense effectiveness as the criterion. The proposed method is feasibly verified via a representative experiment. Compared to the classical strategy selection methods based on the game theory, the proposed method can select the optimal strategy of the multi-stage attack-defense process in the form of pure strategy, which has been proved more operable than the compared ones.

Incorporating Climate Change Scenarios into Water Resources Management (기후 변화를 고려한 수자원 관리 기법)

  • Kim, Yeong-O
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.407-413
    • /
    • 1998
  • This study reviewed the recent studies for the climate change impact on water resource systems and applied one of the techniques to a real reservoir system - the Skagit hydropower system in U.S.A. The technique assumed that the climate change results in ±5% change in monthly average and/or standard deviation of the observed inflows for the Skagit system. For each case of the altered average and standard deviation, an optimal operating policy was derived using s SDP(Stochastic Dynamic Programming) model and compared with the operating policy for the non-climate change case. The results showed that the oparating policy of the Skagit system is more sensitive to the change in the streamflow average than that in the streamflow standard deviation. The derived operating policies were also simulated using the synthetic streamflow scenarios and their average annual gains were compared as a performance index. To choose the best operating policy among the derived policies, a Bayesian decision strategy was also presented with an example. Keywords : climate change, reservoir operating policy, stochastic dynamic programming, Bayesian decision theory.

  • PDF

Risk Assessment and Decision-Making of a Listed Enterprise's L/C Settlement Based on Fuzzy Probability and Bayesian Game Theory

  • Cheng, Zhang;Huang, Nanni
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.318-328
    • /
    • 2020
  • Letter of Credit (L/C) is currently a very popular international settlement method frequently used in international trade processes amongst countries around the globe. Compared with other international settlement methods, however, L/C has some obvious shortcomings. Firstly, it is not easy to use due to the sophisticated processes its usage involves. Secondly, it is sometimes accompanied by a few risks and some uncertainty. Thus, highly efficient methods need to be used to assess and control these risks. To begin with, FAHP and KMV methods are used to resolve the problem of incomplete information associated with L/C and then, on this basis, Bayesian game theory is used in order to make more scientific and reasonable decisions with respect to international trade.

A Novel Method for a Reliable Classifier using Gradients

  • Han, Euihwan;Cha, Hyungtai
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.18-20
    • /
    • 2017
  • In this paper, we propose a new classification method to complement a $na{\ddot{i}}ve$ Bayesian classifier. This classifier assumes data distribution to be Gaussian, finds the discriminant function, and derives the decision curve. However, this method does not investigate finding the decision curve in much detail, and there are some minor problems that arise in finding an accurate discriminant function. Our findings also show that this method could produce errors when finding the decision curve. The aim of this study has therefore been to investigate existing problems and suggest a more reliable classification method. To do this, we utilize the gradient to find the decision curve. We then compare/analyze our algorithm with the $na{\ddot{i}}ve$ Bayesian method. Performance evaluation indicates that the average accuracy of our classification method is about 10% higher than $na{\ddot{i}}ve$ Bayes.

Deciding the Optimal Shutdown Time Incorporating the Accident Forecasting Model (원자력 발전소 사고 예측 모형과 병합한 최적 운행중지 결정 모형)

  • Yang, Hee Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.171-178
    • /
    • 2018
  • Recently, the continuing operation of nuclear power plants has become a major controversial issue in Korea. Whether to continue to operate nuclear power plants is a matter to be determined considering many factors including social and political factors as well as economic factors. But in this paper we concentrate only on the economic factors to make an optimum decision on operating nuclear power plants. Decisions should be based on forecasts of plant accident risks and large and small accident data from power plants. We outline the structure of a decision model that incorporate accident risks. We formulate to decide whether to shutdown permanently, shutdown temporarily for maintenance, or to operate one period of time and then periodically repeat the analysis and decision process with additional information about new costs and risks. The forecasting model to predict nuclear power plant accidents is incorporated for an improved decision making. First, we build a one-period decision model and extend this theory to a multi-period model. In this paper we utilize influence diagrams as well as decision trees for modeling. And bayesian statistical approach is utilized. Many of the parameter values in this model may be set fairly subjective by decision makers. Once the parameter values have been determined, the model will be able to present the optimal decision according to that value.

Uncertainty Improvement of Incomplete Decision System using Bayesian Conditional Information Entropy (베이지언 정보엔트로피에 의한 불완전 의사결정 시스템의 불확실성 향상)

  • Choi, Gyoo-Seok;Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.47-54
    • /
    • 2014
  • Based on the indiscernible relation of rough set, the inevitability of superposition and inconsistency of data makes the reduction of attributes very important in information system. Rough set has difficulty in the difference of attribute reduction between consistent and inconsistent information system. In this paper, we propose the new uncertainty measure and attribute reduction algorithm by Bayesian posterior probability for correlation analysis between condition and decision attributes. We compare the proposed method and the conditional information entropy to address the uncertainty of inconsistent information system. As the result, our method has more accuracy than conditional information entropy in dealing with uncertainty via mutual information of condition and decision attributes of information system.

Understanding Bayesian Experimental Design with Its Applications (베이지안 실험계획법의 이해와 응용)

  • Lee, Gunhee
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1029-1038
    • /
    • 2014
  • Bayesian experimental design is a useful concept in applied statistics for the design of efficient experiments especially if prior knowledge in the experiment is available. However, a theoretical or numerical approach is not simple to implement. We review the concept of a Bayesian experiment approach for linear and nonlinear statistical models. We investigate relationships between prior knowledge and optimal design to identify Bayesian experimental design process characteristics. A balanced design is important if we do not have prior knowledge; however, prior knowledge is important in design and expert opinions should reflect an efficient analysis. Care should be taken if we set a small sample size with a vague improper prior since both Bayesian design and non-Bayesian design provide incorrect solutions.

Determination of Control Limits of Conditional Variance Investigation: Application of Taguchi's Quality Loss Concept (조건부 차이조사의 관리한계 결정: 다구찌 품질손실 개념의 응용)

  • Pai, Hoo Seok;Lim, Chae Kwan
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.4
    • /
    • pp.467-482
    • /
    • 2021
  • Purpose: The main theme of this study is to determine the optimal control limit of conditional variance investigation by mathematical approach. According to the determination approach of control limit presented in this study, it is possible with only one parameter to calculate the control limit necessary for budgeting control system or standard costing system, in which the limit could not be set in advance, that's why it has the advantage of high practical application. Methods: This study followed the analytical methodology in terms of the decision model of information economics, Bayesian probability theory and Taguchi's quality loss function concept. Results: The function suggested by this study is as follows; ${\delta}{\leq}\frac{3}{2}(k+1)+\frac{2}{\frac{3}{2}(k+1)+\sqrt{\{\frac{3}{2}(k+1)\}^2}+4$ Conclusion: The results of this study will be able to contribute not only in practice of variance investigation requiring in the standard costing and budgeting system, but also in all fields dealing with variance investigation differences, for example, intangible services quality control that are difficult to specify tolerances (control limit) unlike tangible product, and internal information system audits where materiality standards cannot be specified unlike external accounting audits.

An Improvement of the Decision-Making of Categorical Data in Rough Set Analysis (범주형 데이터의 러프집합 분석을 통한 의사결정 향상기법)

  • Park, In-Kyu
    • Journal of Digital Convergence
    • /
    • v.13 no.6
    • /
    • pp.157-164
    • /
    • 2015
  • An efficient retrieval of useful information is a prerequisite of an optimal decision making system. Hence, A research of data mining techniques finding useful patterns from the various forms of data has been progressed with the increase of the application of Big Data for convergence and integration with other industries. Each technique is more likely to have its drawback so that the generalization of retrieving useful information is weak. Another integrated technique is essential for retrieving useful information. In this paper, a uncertainty measure of information is calculated such that algebraic probability is measured by Bayesian theory and then information entropy of the probability is measured. The proposed measure generates the effective reduct set (i.e., reduced set of necessary attributes) and formulating the core of the attribute set. Hence, the optimal decision rules are induced. Through simulation deciding contact lenses, the proposed approach is compared with the equivalence and value-reduct theories. As the result, the proposed is more general than the previous theories in useful decision-making.