• Title/Summary/Keyword: bayesian approach

Search Result 622, Processing Time 0.025 seconds

Leave-one-out Bayesian model averaging for probabilistic ensemble forecasting

  • Kim, Yongdai;Kim, Woosung;Ohn, Ilsang;Kim, Young-Oh
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.67-80
    • /
    • 2017
  • Over the last few decades, ensemble forecasts based on global climate models have become an important part of climate forecast due to the ability to reduce uncertainty in prediction. Moreover in ensemble forecast, assessing the prediction uncertainty is as important as estimating the optimal weights, and this is achieved through a probabilistic forecast which is based on the predictive distribution of future climate. The Bayesian model averaging has received much attention as a tool of probabilistic forecasting due to its simplicity and superior prediction. In this paper, we propose a new Bayesian model averaging method for probabilistic ensemble forecasting. The proposed method combines a deterministic ensemble forecast based on a multivariate regression approach with Bayesian model averaging. We demonstrate that the proposed method is better in prediction than the standard Bayesian model averaging approach by analyzing monthly average precipitations and temperatures for ten cities in Korea.

SHM-based probabilistic representation of wind properties: Bayesian inference and model optimization

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.601-609
    • /
    • 2018
  • The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method has been developed in the companion paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the features of available wind monitoring data. To characterize the stochastic properties of the wind parameters with the subsequent wind monitoring data, in this study, Bayesian inference approach considering the uncertainty is proposed to update the wind parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data.

Using Bayesian Estimation Technique to Analyze a Dichotomous Choice Contingent Valuation Data (베이지안 추정법을 이용한 양분선택형 조건부 가치측정모형의 분석)

  • Yoo, Seung-Hoon
    • Environmental and Resource Economics Review
    • /
    • v.11 no.1
    • /
    • pp.99-119
    • /
    • 2002
  • As an alternative to classical maximum likelihood approach for analyzing dichotomous choice contingent valuation (DCCV) data, this paper develops a Bayesian approach. By using the idea of Gibbs sampling and data augmentation, the approach enables one to perform exact inference for DCCV models. A by-product from the approach is welfare measure, such as the mean willingness to pay, and its confidence interval, which can be used for policy analysis. The efficacy of the approach relative to the classical approach is discussed in the context of empirical DCCV studies. It is concluded that there appears to be considerable scope for the use of the Bayesian analysis in dealing with DCCV data.

  • PDF

A Bayesian Approach for Record Value Statistics Model Using Nonhomogeneous Poisson Process

  • Kiheon Choi;Hee chual Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.1
    • /
    • pp.259-269
    • /
    • 1997
  • Bayesian inference for a record value statistics(RVS) model of nonhomogeneous Poisson process is considered. We seal with Bayesian inference for double exponential, Gamma, Rayleigh, Gumble RVS models using Gibbs sampling and Metropolis algorithm and also explore Bayesian computation and model selection.

  • PDF

Geostatistics for Bayesian interpretation of geophysical data

  • Oh Seokhoon;Lee Duk Kee;Yang Junmo;Youn Yong-Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.340-343
    • /
    • 2003
  • This study presents a practical procedure for the Bayesian inversion of geophysical data by Markov chain Monte Carlo (MCMC) sampling and geostatistics. We have applied geostatistical techniques for the acquisition of prior model information, and then the MCMC method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter. This approach provides an effective way to treat Bayesian inversion of geophysical data and reduce the non-uniqueness by incorporating various prior information.

  • PDF

Safety Analysis using bayesian approach (베이지안 기법을 이용한 안전사고 예측기법)

  • Yang, Hee-Joong
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.5
    • /
    • pp.1-5
    • /
    • 2007
  • We construct the procedure to predict safety accidents following Bayesian approach. We make a model that can utilize the data to predict other levels of accidents. An event tree model which is a frequently used graphical tool in describing accident initiation and escalation to more severe accident is transformed into an influence diagram model. Prior distributions for accident occurrence rate and probabilities to escalating to more severe accidents are assumed and likelihood of number of accidents in a given period of time is assessed. And then posterior distributions are obtained based on observed data. We also points out the advantages of the bayesian approach that estimates the whole distribution of accident rate over the classical point estimation.

Fast Conditional Independence-based Bayesian Classifier

  • Junior, Estevam R. Hruschka;Galvao, Sebastian D. C. de O.
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.2
    • /
    • pp.162-176
    • /
    • 2007
  • Machine Learning (ML) has become very popular within Data Mining (KDD) and Artificial Intelligence (AI) research and their applications. In the ML and KDD contexts, two main approaches can be used for inducing a Bayesian Network (BN) from data, namely, Conditional Independence (CI) and the Heuristic Search (HS). When a BN is induced for classification purposes (Bayesian Classifier - BC), it is possible to impose some specific constraints aiming at increasing the computational efficiency. In this paper a new CI based approach to induce BCs from data is proposed and two algorithms are presented. Such approach is based on the Markov Blanket concept in order to impose some constraints and optimize the traditional PC learning algorithm. Experiments performed with the ALARM, as well as other six UCI and three artificial domains revealed that the proposed approach tends to execute fewer comparison tests than the traditional PC. The experiments also show that the proposed algorithms produce competitive classification rates when compared with both, PC and Naive Bayes.

Understanding Bayesian Experimental Design with Its Applications (베이지안 실험계획법의 이해와 응용)

  • Lee, Gunhee
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1029-1038
    • /
    • 2014
  • Bayesian experimental design is a useful concept in applied statistics for the design of efficient experiments especially if prior knowledge in the experiment is available. However, a theoretical or numerical approach is not simple to implement. We review the concept of a Bayesian experiment approach for linear and nonlinear statistical models. We investigate relationships between prior knowledge and optimal design to identify Bayesian experimental design process characteristics. A balanced design is important if we do not have prior knowledge; however, prior knowledge is important in design and expert opinions should reflect an efficient analysis. Care should be taken if we set a small sample size with a vague improper prior since both Bayesian design and non-Bayesian design provide incorrect solutions.

Bayesian Method in Forecasting of time Series (Bayesian 시계열 예측방법에 관한 소고)

  • 박일근
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.7 no.10
    • /
    • pp.47-51
    • /
    • 1984
  • In many forecasting problem, there is little or no useful historical information available at the time the initial forecast is required, The propose of this paper is study on Bayesian Method in forecasting. I : Introduction. II : Bayesian estimation. III : Constant Model. IV : General time series Models. V : Conclusion. The Bayesian procedure are then used to revise parameter estimates when time series information is available, in this paper we give a general description of the bayesian approach and demonstrate the methodology with several specific cases.

  • PDF

Bayesian Semi-Parametric Regression for Quantile Residual Lifetime

  • Park, Taeyoung;Bae, Wonho
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • The quantile residual life function has been effectively used to interpret results from the analysis of the proportional hazards model for censored survival data; however, the quantile residual life function is not always estimable with currently available semi-parametric regression methods in the presence of heavy censoring. A parametric regression approach may circumvent the difficulty of heavy censoring, but parametric assumptions on a baseline hazard function can cause a potential bias. This article proposes a Bayesian semi-parametric regression approach for inference on an unknown baseline hazard function while adjusting for available covariates. We consider a model-based approach but the proposed method does not suffer from strong parametric assumptions, enjoying a closed-form specification of the parametric regression approach without sacrificing the flexibility of the semi-parametric regression approach. The proposed method is applied to simulated data and heavily censored survival data to estimate various quantile residual lifetimes and adjust for important prognostic factors.