• Title/Summary/Keyword: bayesian analysis

Search Result 975, Processing Time 0.029 seconds

Bayesian Network Analysis for the Dynamic Prediction of Financial Performance Using Corporate Social Responsibility Activities (베이지안 네트워크를 이용한 기업의 사회적 책임활동과 재무성과)

  • Sun, Eun-Jung
    • Management & Information Systems Review
    • /
    • v.34 no.5
    • /
    • pp.71-92
    • /
    • 2015
  • This study analyzes the impact of Corporate Social Responsibility (CSR) activities on financial performances using Bayesian Network. The research tries to overcome the issues of the uniform assumption of a linear function between financial performance and CSR activities in multiple regression analysis widely used in previous studies. It is required to infer a causal relationship between activities of CSR which have an impact on the financial performances. Identifying the relationship would empower the firms to improve their financial performance by informing the decision makers about the different CSR activities that influence the financial performance of the firms. This research proposes General Bayesian Network (GBN) and presents Markov Blanket induced from GBN. It is empirically demonstrated that all the proposals presented in this study are statistically significant by the results of the research conducted by Korean Economic Justice Institute (KEJI) under Citizen's Coalition for Economic Justice (CCEJ) which investigated approximately 200 companies in Korea based on Korean Economic Justice Institute Index (KEJI index) from 2005 to 2011. The Bayesian Network to effectively infer the properties affecting financial performances through the probabilistic causal relationship. Moreover, I found that there is a causal relationship among CSR activities variable; that is Environment protection is related to Customer protection, Employee satisfaction, and firm size; Soundness is related to Total CSR Evaluation Score, Debt-Assets Ratio. Though the what-if analysis, I suggest to the sensitive factor among the explanatory variables.

  • PDF

Spatial-Temporal Drought Analysis of South Korea Based On Neural Networks (신경망을 이용한 우리나라의 시공간적 가뭄의 해석)

  • Sin, Hyeon-Seok;Park, Mu-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.1
    • /
    • pp.15-29
    • /
    • 1999
  • A new methodology to analyze and quantify regional meteorological drought based on annual precipitation data has been introduced in this paper In this study, based on posterior probability estimator and Bayesian classifier in Spatial Analysis Neural Network (SANN), point drought probabilities categorized as extreme, severe, mild, and non drought events has been defined, and a Bayesian Drought Severity Index (BPSI) has been introduced to classify the region of interest into four drought severities. In addition, to estimate the regional drought severity for the entire region, regional extreme, severe, mild, and non drought probabilities which are the areal averages of point drought probabilities over the region has been computed and applied. In this study, the proposed methodology has been applied to analyze the regional drought of South Korea during 1967-1996 years. The drought severity for the whole South Korea was defined spatially at each year and each year was classified in a drought severity criterion. The results may be useful for water manager to understand the South Korean drought with respect to the spatial and temporal variation.

  • PDF

Bayesian Approaches to Zero Inflated Poisson Model (영 과잉 포아송 모형에 대한 베이지안 방법 연구)

  • Lee, Ji-Ho;Choi, Tae-Ryon;Wo, Yoon-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.677-693
    • /
    • 2011
  • In this paper, we consider Bayesian approaches to zero inflated Poisson model, one of the popular models to analyze zero inflated count data. To generate posterior samples, we deal with a Markov Chain Monte Carlo method using a Gibbs sampler and an exact sampling method using an Inverse Bayes Formula(IBF). Posterior sampling algorithms using two methods are compared, and a convergence checking for a Gibbs sampler is discussed, in particular using posterior samples from IBF sampling. Based on these sampling methods, a real data analysis is performed for Trajan data (Marin et al., 1993) and our results are compared with existing Trajan data analysis. We also discuss model selection issues for Trajan data between the Poisson model and zero inflated Poisson model using various criteria. In addition, we complement the previous work by Rodrigues (2003) via further data analysis using a hierarchical Bayesian model.

Analysis of Missing Data Using an Empirical Bayesian Method (경험적 베이지안 방법을 이용한 결측자료 연구)

  • Yoon, Yong Hwa;Choi, Boseung
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1003-1016
    • /
    • 2014
  • Proper missing data imputation is an important procedure to obtain superior results for data analysis based on survey data. This paper deals with both a model based imputation method and model estimation method. We utilized a Bayesian method to solve a boundary solution problem in which we applied a maximum likelihood estimation method. We also deal with a missing mechanism model selection problem using forecasting results and a comparison between model accuracies. We utilized MWPE(modified within precinct error) (Bautista et al., 2007) to measure prediction correctness. We applied proposed ML and Bayesian methods to the Korean presidential election exit poll data of 2012. Based on the analysis, the results under the missing at random mechanism showed superior prediction results than under the missing not at random mechanism.

Probabilistic analysis of tunnel collapse: Bayesian method for detecting change points

  • Zhou, Binghua;Xue, Yiguo;Li, Shucai;Qiu, Daohong;Tao, Yufan;Zhang, Kai;Zhang, Xueliang;Xia, Teng
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.291-303
    • /
    • 2020
  • The deformation of the rock surrounding a tunnel manifests due to the stress redistribution within the surrounding rock. By observing the deformation of the surrounding rock, we can not only determine the stability of the surrounding rock and supporting structure but also predict the future state of the surrounding rock. In this paper, we used grey system theory to analyse the factors that affect the deformation of the rock surrounding a tunnel. The results show that the 5 main influencing factors are longitudinal wave velocity, tunnel burial depth, groundwater development, surrounding rock support type and construction management level. Furthermore, we used seismic prospecting data, preliminary survey data and excavated section monitoring data to establish a neural network learning model to predict the total amount of deformation of the surrounding rock during tunnel collapse. Subsequently, the probability of a change in deformation in each predicted section was obtained by using a Bayesian method for detecting change points. Finally, through an analysis of the distribution of the change probability and a comparison with the actual situation, we deduced the survey mark at which collapse would most likely occur. Surface collapse suddenly occurred when the tunnel was excavated to this predicted distance. This work further proved that the Bayesian method can accurately detect change points for risk evaluation, enhancing the accuracy of tunnel collapse forecasting. This research provides a reference and a guide for future research on the probability analysis of tunnel collapse.

Beta Processes and Survival Analysis (베타과정과 베이지안 생존분석)

  • Kim, Yongdai;Chae, Minwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.891-907
    • /
    • 2014
  • This article is concerned with one of the most important prior distributions for Bayesian analysis of survival and event history data, called Beta processes, proposed in Hjort (1990). We review the current state of the art of beta processes and their application to survival analysis. Relevant methodological and practical areas of research that we touch on relate to constructions, posterior distributions, large-sample properties, Bayesian computations, and mixtures of Beta processes.

Reliability Analysis of Geotechnical Properties in Incheon Port Area (인천항 지역의 지반정수 신뢰성 분석)

  • Shin, Eun-Chul;Jeon, Jae-Ku;Kim, Hyoung-Jun;Lee, Chung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.952-960
    • /
    • 2009
  • Foundation soils are greatly influenced on the stability of structures. The soft clay deposited in Incheon Port area is named either nomally consolidated clay or unconsolidated clay. New harbor structures will be constructed in Incheon Port area. Not sufficient soil boring datum are obtained from the filed soil exploration due to limited time and cost. The harbor construct site is pretty large area and the soils are not homogenous. This paper presented the result of reliability analysis which was performed by both Bayesian approach and analysis of variance.

  • PDF

Development and Application of a Performance Prediction Model for Home Care Nursing Based on a Balanced Scorecard using the Bayesian Belief Network (Bayesian Belief Network 활용한 균형성과표 기반 가정간호사업 성과예측모델 구축 및 적용)

  • Noh, Wonjung;Seomun, GyeongAe
    • Journal of Korean Academy of Nursing
    • /
    • v.45 no.3
    • /
    • pp.429-438
    • /
    • 2015
  • Purpose: This study was conducted to develop key performance indicators (KPIs) for home care nursing (HCN) based on a balanced scorecard, and to construct a performance prediction model of strategic objectives using the Bayesian Belief Network (BBN). Methods: This methodological study included four steps: establishment of KPIs, performance prediction modeling, development of a performance prediction model using BBN, and simulation of a suggested nursing management strategy. An HCN expert group and a staff group participated. The content validity index was analyzed using STATA 13.0, and BBN was analyzed using HUGIN 8.0. Results: We generated a list of KPIs composed of 4 perspectives, 10 strategic objectives, and 31 KPIs. In the validity test of the performance prediction model, the factor with the greatest variance for increasing profit was maximum cost reduction of HCN services. The factor with the smallest variance for increasing profit was a minimum image improvement for HCN. During sensitivity analysis, the probability of the expert group did not affect the sensitivity. Furthermore, simulation of a 10% image improvement predicted the most effective way to increase profit. Conclusion: KPIs of HCN can estimate financial and non-financial performance. The performance prediction model for HCN will be useful to improve performance.

Synthesizing Failure Data of Pump in PCB Manufacturing using Bayesian Method (베이지안 방법을 이용한 PCB 제조공정의 펌프 고장 데이터 합성)

  • Woo, Jeong Jae;Kim, Min Hwan;Chu, Chang Yeop;Baek, Jong Bae
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2020
  • Failure data that has systematically managed for a long time has high reliability to an estimated volume. But since much cost and effort are needed to secure reliability data, data from overseas country is used in quantitative risk analysis in many workplaces. Reliability of the data that can be collected in workplaces can be dropped because of insufficient sample or lack of observation time. Therefore, estimated data is difficult to use as it is and environment and characteristic of the workplace cannot be reflected by using data from overseas country. So this study used Bayesian method that can be used reflecting both reliability data from overseas country and workplace failure data that has less samples. As a setting toward difficult situation that securing sufficient failure data cannot be achieved, we composed workplace failure data equivalent to mass observation time 20%(t=17000), 40%(t=24000), 60%(t=31000), 80%(t=38000) and IEEE data by using Bayesian method.

Evaluations of Small Area Estimations with/without Spatial Terms (공간 통계 활용에 따른 소지역 추정법의 평가)

  • Shin, Key-Il;Choi, Bong-Ho;Lee, Sang-Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.229-244
    • /
    • 2007
  • Among the small area estimation methods, it has been known that hierarchical Bayesian(HB) approach is the most reasonable and effective method. However any model based approaches need good explanatory variables and finding them is the key role in the model based approach. As the lacking of explanatory variables, adopting the spatial terms in the model was introduced. Here in this paper, we evaluate the model based methods with/without spatial terms using the diagnostic methods which were introduced by Brown et al. (2001). And Economic Active Population Survey(2005) is used for data analysis.