• Title/Summary/Keyword: bayesian MCMC

Search Result 147, Processing Time 0.023 seconds

An estimation method for stochastic reaction model (확률적 방법에 기반한 화학 반응 모형의 모수 추정 방법)

  • Choi, Boseung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.813-826
    • /
    • 2015
  • This research deals with an estimation method for kinetic reaction model. The kinetic reaction model is a model to explain spread or changing process based on interaction between species on the Biochemical area. This model can be applied to a model for disease spreading as well as a model for system Biology. In the search, we assumed that the spread of species is stochastic and we construct the reaction model based on stochastic movement. We utilized Gillespie algorithm in order to construct likelihood function. We introduced a Bayesian estimation method using Markov chain Monte Carlo methods that produces more stable results. We applied the Bayesian estimation method to the Lotka-Volterra model and gene transcription model and had more stable estimation results.

Rare Disaster Events, Growth Volatility, and Financial Liberalization: International Evidence

  • Bongseok Choi
    • Journal of Korea Trade
    • /
    • v.27 no.2
    • /
    • pp.96-114
    • /
    • 2023
  • Purpose - This paper elucidates a nexus between the occurrence of rare disaster events and the volatility of economic growth by distinguishing the likelihood of rare events from stochastic volatility. We provide new empirical facts based on a quarterly time series. In particular, we focus on the role of financial liberalization in spreading the economic crisis in developing countries. Design/methodology - We use quarterly data on consumption expenditure (real per capita consumption) from 44 countries, including advanced and developing countries, ending in the fourth quarter of 2020. We estimate the likelihood of rare event occurrences and stochastic volatility for countries using the Bayesian Markov chain Monte Carlo (MCMC) method developed by Barro and Jin (2021). We present our estimation results for the relationship between rare disaster events, stochastic volatility, and growth volatility. Findings - We find the global common disaster event, the COVID-19 pandemic, and thirteen country-specific disaster events. Consumption falls by about 7% on average in the first quarter of a disaster and by 4% in the long run. The occurrence of rare disaster events and the volatility of gross domestic product (GDP) growth are positively correlated (4.8%), whereas the rare events and GDP growth rate are negatively correlated (-12.1%). In particular, financial liberalization has played an important role in exacerbating the adverse impact of both rare disasters and financial market instability on growth volatility. Several case studies, including the case of South Korea, provide insights into the cause of major financial crises in small open developing countries, including the Asian currency crisis of 1998. Originality/value - This paper presents new empirical facts on the relationship between the occurrence of rare disaster events (or stochastic volatility) and growth volatility. Increasing data frequency allows for greater accuracy in assessing a country's specific risk. Our findings suggest that financial market and institutional stability can be vital for buffering against rare disaster shocks. It is necessary to preemptively strengthen the foundation for financial stability in developing countries and increase the quality of the information provided to markets.

Reliability Analysis Under Input Variable and Metamodel Uncertainty Using Simulation Method Based on Bayesian Approach (베이지안 접근법을 이용한 입력변수 및 근사모델 불확실성 하에 서의 신뢰성 분석)

  • An, Da-Wn;Won, Jun-Ho;Kim, Eun-Jeong;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1163-1170
    • /
    • 2009
  • Reliability analysis is of great importance in the advanced product design, which is to evaluate reliability due to the associated uncertainties. There are three types of uncertainties: the first is the aleatory uncertainty which is related with inherent physical randomness that is completely described by a suitable probability model. The second is the epistemic uncertainty, which results from the lack of knowledge due to the insufficient data. These two uncertainties are encountered in the input variables such as dimensional tolerances, material properties and loading conditions. The third is the metamodel uncertainty which arises from the approximation of the response function. In this study, an integrated method for the reliability analysis is proposed that can address all these uncertainties in a single Bayesian framework. Markov Chain Monte Carlo (MCMC) method is employed to facilitate the simulation of the posterior distribution. Mathematical and engineering examples are used to demonstrate the proposed method.

Bayesian analysis of directional conditionally autoregressive models (방향성 공간적 조건부 자기회귀 모형의 베이즈 분석 방법)

  • Kyung, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1133-1146
    • /
    • 2016
  • Counts or averages over arbitrary regions are often analyzed using conditionally autoregressive (CAR) models. The spatial neighborhoods within CAR model are generally formed using only the inter-distance or boundaries between the sub-regions. Kyung and Ghosh (2009) proposed a new class of models to accommodate spatial variations that may depend on directions, using different weights given to neighbors in different directions. The proposed model, directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Bayesian inference method is discussed based on efficient Markov chain Monte Carlo (MCMC) sampling of the posterior distributions of the parameters. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.

Bayesian reliability estimation of bivariate Marshal-Olkin exponential stress-strength model

  • Chandra, N.;Pandey, M.
    • International Journal of Reliability and Applications
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 2012
  • In this article we attempted reliability analysis of a component under the stress-strength pattern with both classical as well as Bayesian techniques. The main focus is made to develop the theory for dealing the reliability problems in various circumstances for bivariate environmental set up in context of Bayesian paradigm. A stress-strength based model describes the life of a component which has strength (Y) and is subjected to stress(X). We develop the Bayes and moment estimators of reliability of a component for each of the three possible conditions, under the assumption that the two stresses (i.e. $X_1$ and $X_2$) on a component are dependent and follow a Bivariate exponential (BVE) of Marshall-Olkin distribution, the strength of a component (Y) following exponential distribution is independent of the stresses. The simulation study is performed with Markov Chain Monte Carlo technique via Gibbs sampler to obtain the estimates of Bayes estimators of reliability, are compared with moment estimators of reliabilities on the basis of absolute biases.

  • PDF

The Impact of Foreign Ownership on Capital Structure: Empirical Evidence from Listed Firms in Vietnam

  • NGUYEN, Van Diep;DUONG, Quynh Nga
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.2
    • /
    • pp.363-370
    • /
    • 2022
  • The study aims to probe the impact of foreign ownership on Vietnamese listed firms' capital structure. This study employs panel data of 288 non-financial firms listed on the Ho Chi Minh City stock exchange (HOSE) and Ha Noi stock exchange (HNX) in 2015-2019. In this research, we applied a Bayesian linear regression method to provide probabilistic explanations of the model uncertainty and effect of foreign ownership on the capital structure of non-financial listed enterprises in Vietnam. The findings of experimental analysis by Bayesian linear regression method through Markov chain Monte Carlo (MCMC) technique combined with Gibbs sampler suggest that foreign ownership has substantial adverse effects on the firms' capital structure. Our findings also indicate that a firm's size, age, and growth opportunities all have a strong positive and significant effect on its debt ratio. We found that the firms' profitability, tangible assets, and liquidity negatively and strongly affect firms' capital structure. Meanwhile, there is a low negative impact of dividends and inflation on the debt ratio. This research has ramifications for business managers since it improves a company's financial resources by developing a strong capital structure and considering foreign investment as a source of funding.

Small area estimation of the insurance benefit for customer segmentations (고객집단별 보험금에 대한 소지역 추정)

  • Kim, Yeong-Hwa;Kim, Ki-Su
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.77-87
    • /
    • 2009
  • Bayesian methods have been focused in recent years for solving small area estimation problems. In this paper, the hierarchical Bayes procedure is implemented via MCMC techniques and compared with the results of One-way, GLM-Normal, and GLM-Gamma cases by analyzing real data of insurance benefit for customer segmentations. After analyzing insurance benefit real data for customer segmentations, we can conclude that the insurance benefit estimator through the small area estimation is more efficient than the estimators by other methods. In addition, we found that the small area estimation gave accurate estimation result for the small number domains.

  • PDF

Bayesian and maximum likelihood estimations from exponentiated log-logistic distribution based on progressive type-II censoring under balanced loss functions

  • Chung, Younshik;Oh, Yeongju
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.425-445
    • /
    • 2021
  • A generalization of the log-logistic (LL) distribution called exponentiated log-logistic (ELL) distribution on lines of exponentiated Weibull distribution is considered. In this paper, based on progressive type-II censored samples, we have derived the maximum likelihood estimators and Bayes estimators for three parameters, the survival function and hazard function of the ELL distribution. Then, under the balanced squared error loss (BSEL) and the balanced linex loss (BLEL) functions, their corresponding Bayes estimators are obtained using Lindley's approximation (see Jung and Chung, 2018; Lindley, 1980), Tierney-Kadane approximation (see Tierney and Kadane, 1986) and Markov Chain Monte Carlo methods (see Hastings, 1970; Gelfand and Smith, 1990). Here, to check the convergence of MCMC chains, the Gelman and Rubin diagnostic (see Gelman and Rubin, 1992; Brooks and Gelman, 1997) was used. On the basis of their risks, the performances of their Bayes estimators are compared with maximum likelihood estimators in the simulation studies. In this paper, research supports the conclusion that ELL distribution is an efficient distribution to modeling data in the analysis of survival data. On top of that, Bayes estimators under various loss functions are useful for many estimation problems.

Bayesian Analysis of Dose-Effect Relationship of Cadmium for Benchmark Dose Evaluation (카드뮴 반응용량 곡선에서의 기준용량 평가를 위한 베이지안 분석연구)

  • Lee, Minjea;Choi, Taeryon;Kim, Jeongseon;Woo, Hae Dong
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.453-470
    • /
    • 2013
  • In this paper, we consider a Bayesian analysis of the dose-effect relationship of cadmium to evaluate a benchmark dose(BMD). For this purpose, two dose-response curves commonly used in the toxicity study are fitted based on Bayesian methods to the data collected from the scientific literature on cadmium toxicity. Specifically, Bayesian meta-analysis and hierarchical modeling build an overall dose-effect relationship that use a piecewise linear model and Hill model, where the inter-study heterogeneity and inter-individual variability of dose and effect such as gender, age and ethnicity are accounted. Estimation of the unknown parameters is made by using a Markov chain Monte Carlo algorithm based user-friendly software WinBUGS. Benchmark dose estimates are evaluated for various cut-offs and compared with different tested subpopulations with with gender, age and ethnicity based on these two Bayesian hierarchical models.

Uncertainty Analysis of Stage-Discharge Curve Based on Bayesian Regression Model Coupled with Change-Point Analysis (Bayesian 회귀분석과 변동점 분석을 이용한 수위-유량 관계곡선 불확실성 분석)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.364-364
    • /
    • 2012
  • 수자원 연구의 주요 목적인 효과적인 홍수 및 가뭄관리를 하기 위해서는 그 연구의 기초가 되는 자료를 관측하고 정도(accuracy, 精度)를 향상시키는 연구 또한 매우 중요한 부분이라고 볼 수 있다. 이러한 점에서 수위-유량측정의 경우, 관측자의 숙련도와 계측기 오차에 따라 관측값에 미치는 영향이 큰 특징을 갖고 있어 유량측정의 정확성을 높이고자 진보된 계측기의 개발 및 분석 방법에 관한 연구는 꾸준히 진행되고 있다. 일반적으로 유량을 추정하기 위해서 특정 단면에서의 수위를 측정하여 이를 수위-유량 관계곡선을 통해서 유량으로 환산하고, 수위-유량 관계를 측정한 후 이를 회귀분석 방법으로 내삽 및 외삽을 실시하여 유량을 측정하게 된다. 그러나 수위-유량 관계곡선에서 저수위와 고수위를 하나의 곡선식으로 하게 되는 경우 정도가 낮아지게 되므로 많은 경우에 있어서 저수위, 고수위를 각각의 곡선으로 구하여 사용하고 있다. 문제는 이러한 경우 정량적으로 변곡점을 구하기보다는 경험적으로 저수위와 고수위를 구분하고 있으며, 수위-유량관계를 회귀식에 의해서 추정하게 되므로 이에 대한 불확실성이 발생하게 된다. 따라서 본 연구에서는 불확실성을 정량화시키기 위한 방법으로 Bayesian MCMC 기법을 활용하며 수위-유량 관계곡선식의 매개변수들의 사후분포를 추정하여 매개변수의 최적화 및 불확실성을 평가하였다. 앞서 언급되었듯이 저수위 및 고수위로 분리하여 수위-유량 곡선식을 도출하고 있으나 저수위 및 고수위를 분리하는 기준이 경험적이기 때문에 신뢰성이 저해되는 문제점이 발생한다. 본 연구에서는 수위-유량 곡선식의 매개변수들을 최적화 하는 동시에 Poisson 분포 기반의 변동점 분석이 연동되어 저수위 및 고수위를 분리할 수 있는 Bayesian 기반 통합 수위-유량 곡선 해석 방법을 개발하고자 한다.

  • PDF