• Title/Summary/Keyword: battery-free

Search Result 104, Processing Time 0.034 seconds

A Study on Transient Operation Characteristics of 30kW Scale CVCF Inverter based Micro-grid (30kW급 CVCF 인버터 기반 Micro-grid의 구현 및 과도상태 운용특성에 관한 연구)

  • Lee, Hu-Dong;Choi, Sung-Sik;Ferreira, Marito;Park, Ji-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.18-25
    • /
    • 2019
  • Recently, micro-grids based on a CVCF inverter have been replacing diesel generators to reduce CO2 emissions in island areas with the increase of renewable energy sources. Stable operation methods are also being researched. These micro-grids may cause energy sinking if the total output of renewable energy sources is larger than the total customer loads. In the case of energy sinking, the voltage of a CVCF battery could rapidly increase according to the condition of SOC, and blackout could occur in the micro-grid due to the operation of a protection device in a CVCF inverter. Therefore, this paper analyzes the operation characteristics of a CVCF-inverter-based micro-grid when energy sinking occurs and proposes a transient operation strategy to prevent shut-down of the CVCF inverter. A test device of a 30-kW CVCF-inverter-based micro-grid was implemented, and the transient operation characteristics for the energy sinking phenomenon are presented. The simulation results confirm that blackout can be properly prevented according to the conditions of SOC and voltage in a CVCF battery.

A Study on Optimization Design of Off-grid Hybrid Power Generation System (독립형 하이브리드발전시스템 최적설계에 관한 연구)

  • Jeong, Moon-Seon;Moon, Chae-Joo;Chang, Young-Hak;Park, Tae-Sik;Lee, Suk-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.247-252
    • /
    • 2015
  • The majority of electric power in the domestic manned islands with off-grid power system is supplied by the diesel generators. However, in the case of off-grid islands the fuel cost is more expensive to inland areas and difficult to transport them to islands. So the development of renewable energy system using natural resource have been recently introduced. But renewable energy that depend on the natural environment, it is necessary to organized the hybrid system with existing diesel engine because the energy is difficult to maintain stable electric power. This paper presents the results of a feasibility study of hybrid system with energy storage system such as wind, solar, battery and diesel engine. The study included off-grid island as the Seogeochado islands located in Jeolanamdo Province. And, the paper proposed a optimal capacity of hybrid system configuration to maintain carbon free with minimum investment cost. the analysis of economic adaptability performed by HOMER program.

Li-free Thin-Film Batteries with Structural Configuration of Pt/LiCoO2/LiPON/Cu and Pt/LiCoO2/LiPON/LiCoO2/Cu (Pt/LiCoO2/LiPON/Cu와 Pt/LiCoO2/LiPON/LiCoO2/Cu 구조를 갖는 Li-free 박막전지)

  • Shin, Min-Seon;Kim, Tae-Yeon;Lee, Sung-Man
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.243-248
    • /
    • 2018
  • All solid state thin film batteries with two types of cell structure, Pt / $LiCoO_2$ / LiPON / Cu and Pt / $LiCoO_2$ / LiPON / $LiCoO_2$ / Cu, are prepared and their electrochemical performances are investigated to evaluate the effect of $LiCoO_2$ interlayer at the interface of LiPON / Cu. The crystallinity of the deposited $LiCoO_2$ thin films is confirmed by XRD and Raman analysis. The crystalline $LiCoO_2$ cathode thin film is obtained and $LiCoO_2$ as the interlayer appears to be amorphous. The surface morphology of Cu current collector after cycling of the batteries is observed by AFM. The presence of a 10 nm-thick layer of $LiCoO_2$ at the interface of LiPON / Cu enhances the interfacial adhesion and reduces the interfacial resistance. As a result, Li plating / stripping at the interface of LiPON / Cu during charge/discharge reaction takes place more uniformly on Cu current collector, while without the interlayer of $LiCoO_2$ at the interface of LiPON / Cu, the Li plating / stripping is localized on current collector. The thin film batteries with the interlayer of $LiCoO_2$ at the interface of LiPON / Cu exhibits enhanced initial coulombic efficiency, reversible capacity and cycling stability. The thickness of the anode current collector Cu also appears to be crucial for electrochemical performances of all solid state thin film batteries.

UV-cured Polymer Solid Electrolyte Reinforced using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries

  • Hye Min Choi;Su Jin Jun;Jinhong Lee;Myung-Hyun Ryu;Hyeyoung Shin;Kyu-Nam Jung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.85-95
    • /
    • 2023
  • In recent years, solid-state Li metal batteries (SSLBs) have attracted significant attention as the next-generation batteries with high energy and power densities. However, uncontrolled dendrite growth and the resulting pulverization of Li during repeated plating/stripping processes must be addressed for practical applications. Herein, we report a plastic-crystal-based polymer/ceramic composite solid electrolyte (PCCE) to resolve these issues. To fabricate the one-side ceramic-incorporated PCCE (CI-PCCE) film, a mixed precursor solution comprising plastic-crystal-based polymer (succinonitrile, SN) with garnet-structured ceramic (Li7La3Zr2O12, LLZO) particles was infused into a thin cellulose membrane, which was used as a mechanical framework, and subsequently solidified by using UV-irradiation. The CI-PCCE exhibited good flexibility and a high room-temperature ionic conductivity of over 10-3 S cm-1. The Li symmetric cell assembled with CI-PCCE provided enhanced durability against Li dendrite penetration through the solid electrolyte (SE) layer than those with LLZO-free PCCEs and exhibited long-term cycling stability (over 200 h) for Li plating/stripping. The enhanced Li+ transference number and lower interfacial resistance of CI-PCCE indicate that the ceramic-polymer composite layer in contact with the Li anode enabled the uniform distribution of Li+ flux at the interface between the Li metal and CI-PCCE, thereby promoting uniform Li plating/stripping. Consequently, the Li//LiFePO4 (LFP) full cell constructed with CI-PCCE demonstrated superior rate capability (~120 mAh g-1 at 2 C) and stable cycle performance (80% after 100 cycles) than those with ceramic-free PCCE.

Time Switching for Wireless Communications with Full-Duplex Relaying in Imperfect CSI Condition

  • Nguyen, Tan N.;Do, Dinh-Thuan;Tran, Phuong T.;Voznak, Miroslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4223-4239
    • /
    • 2016
  • In this paper, we consider an amplify-and-forward (AF) full-duplex relay network (FDRN) using simultaneous wireless information and power transfer, where a battery-free relay node harvests energy from the received radio frequency (RF) signals from a source node and uses the harvested energy to forward the source information to destination node. The time-switching relaying (TSR) protocol is studied, with the assumption that the channel state information (CSI) at the relay node is imperfect. We deliver a rigorous analysis of the outage probability of the proposed system. Based on the outage probability expressions, the optimal time switching factor are obtained via the numerical search method. The simulation and numerical results provide practical insights into the effect of various system parameters, such as the time switching factor, the noise power, the energy harvesting efficiency, and the channel estimation error on the performance of this network. It is also observed that for the imperfect CSI case, the proposed scheme still can provide acceptable outage performance given that the channel estimation error is bounded in a permissible interval.

Development of wireless/battery-free Love wave biosensor (무선/무전원 러브파 바이오센서 개발)

  • Nam, Min-Woo;Oh, Hae-Kwan;Lee, Kee-Keun;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1545_1546
    • /
    • 2009
  • This paper reports a novel wireless love-wave biosensor on $41^{\circ}$ YX $LiNbO_3$ piezoelectric substrate and $SiO_2$ guiding layer for Immunoglobulin G (IgG) detection by protein binding. Different from the traditional biosensors based on surface acoustic wave (SAW) oscillator structured by delay line/resonators, a 440MHz reflective delay line consists of SPUDTs and three reflectors placed on $41^{\circ}$ YX $LiNbO_3$ in a row was fabricated as the sensor element. Good linearity, reproducibility, and high sensitivity were observed in the IgG concentration range 1~65nM. Unique advantages as high sensitivity, passive and simple measurement system are present over currently available other biosensors.

  • PDF

Optimized Charging in Large-Scale Deployed WSNs with Mobile Charger

  • Qin, Zhenquan;Lu, Bingxian;Zhu, Ming;Sun, Liang;Shu, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5307-5327
    • /
    • 2016
  • Restricted by finite battery energy, traditional wireless sensor networks (WSNs) can only maintain for a limited period of time, resulting in serious performance bottleneck in long-term deployment of WSN. Fortunately, the advancement in the wireless energy transfer technology provides a potential to free WSNs from limited energy supply and remain perpetual operational. A mobile charger called wireless charging vehicle (WCV) is employed to periodically charge each sensor node and keep its energy level above the minimum threshold. Aiming at maximizing the ratio of the WCV's vocation time over the cycle time as well as guaranteeing the perpetual operation of networks, we propose a feasible and optimal solution to this issue within the context of a real-time large-scale deployed WSN. First, we develop two different types of charging cycles: initialization cycles and renewable cycles and give relevant algorithms to construct these two cycles for each sensor node. We then formulate the optimization problem into an optimal construction algorithm and prove its correctness through theoretical analysis. Finally, we conduct extensive simulations to demonstrate the effectiveness of our proposed algorithms.

New Single-stage Interleaved Totem-pole AC-DC Converter for Bidirectional On-board Charger

  • ;Kim, Sang-Jin;Kim, Byeong-U;Sin, Yang-Jin;Choe, Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.192-194
    • /
    • 2018
  • In this paper a new single-stage ac-dc converter with high frequency isolation and low components count is introduced. The proposed converter is constructed using two interleaved boost circuits in the grid side and non-regulating full bridge in the DC side. An optimized switching is implemented on the two interleaved boost circuits resulting in a ripple-free grid current without a ripple cancellation network; hence very small filter inductors are used. A simple and reliable closed-loop control system is easily implemented, since the phase-shift angle is the only independent variable. Moreover, current imbalance is avoided in the presented topology without current control loop in each phase. The proposed charger charges the battery with a sinusoidal-like current instead of a constant direct current. ZVS turn on of all switches is achieved throughout the operation in both directions of power flow without any additional components.

  • PDF

Development of the Control System for Fast-Responding Frequency Regulation in Power Systems using Large-Scale Energy Storage Systems

  • Lim, Geon-Pyo;Park, Chan-Wook;Labios, Remund;Yoon, Yong-Beom
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.9-13
    • /
    • 2015
  • Energy storage systems (ESS) can be used to provide frequency regulation services in a power system to replace traditional frequency regulation power plants. Battery ESS, in particular, can provide "fast-responding frequency regulation," wherein the facility can respond immediately and accurately to the frequency regulation signal sent by the system operator. This paper presents the development and the trial run results of a frequency regulation control system that uses large-scale ESS for use in a large power system. The control system was developed initially for the 4 MW ESS demonstration facility in Jocheon Jeju Island, and was further developed for use in the 28 MW ESS facility at the Seo-Anseong substation and the 24 MW ESS facility at the Shin-Yongin substation to provide frequency regulation services within mainland Korea. The ESS facility in Seo-Anseong substation responds to a sudden drop in frequency via governor-free control, while the ESS facility in Shin-Yongin responds via automatic generator control (AGC).

A Novel Three-Phase Line-Interactive UPS System having AC Line Reactor and Parallel-Series Active Filters (AC 라인 리액터와 병렬 및 직렬 능동필터를 가지는 새로운 3상 라인 인터렉티브 무정전전원장치 시스템)

  • Ji Jun-Keun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.193-197
    • /
    • 2004
  • The four-leg Voltage Source Converter(VSC) can use the DC link voltage effectively by the 3-D SVPWM method. Hence the DC battery voltage can be reduced by $15\%$ in comparison to that of the conventional line-interactive UPS system. In this paper a novel line interactive Uninterruptible Power Supply(UPS) using the two four-leg VSCs is proposed. One VSC is in parallel with the ac link reactor of the power source side, and the other is in series with the load. The parallel four-leg voltage source inverter controls the three-phase line voltage independently in order to control the line reactor current indirectly. It eliminates the neutral line current and the active ripple power of the source side using the pqr theory so that unity power factor and the sinusoidal source current can be achieved even though both the source and the load voltages have zero sequence components. The series four-leg voltage source inverter compensates the line voltage and allows it to be balanced and harmonic-free. Both of the parallel and series four-leg voltage source inverters always act as independently controllable voltage sources, so that the three-phase output voltage shows a seamless transition to the backup mode. The feasibility of the proposed UPS system has been investigated and verified through computer simulations results.

  • PDF