• Title/Summary/Keyword: battery modeling

Search Result 232, Processing Time 0.029 seconds

A Study on Modeling of Leakage Current in ESS Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 ESS의 누설전류 모델링에 관한 연구)

  • Kim, Ji-Myung;Tae, Dong-Hyun;Lee, Il-Moo;Lim, Geon-Pyo;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.810-818
    • /
    • 2021
  • A leakage current of ESS is classified mainly by the occurrence from a PCS(Power Conditioning System) section and an unbalanced grid current. The reason for the leakage current from the PCS section is a voltage change by IGBT (Insulated Gate Bipolar Transistor) switching and stray capacitance between the IGBT and heatsink. The leakage current caused by the grid unbalanced current flows to the ESS through the neutral line of grid-connected transformer for the ESS with a three limb iron type of Yg-wire connection. This paper proposes a mechanism for the occurrence of leakage current caused by stray capacitance, which is calculated using the heatsink formula, from the aspect of the PCS section and grid unbalance current. Based on the proposed mechanisms, this study presents the modeling of the leakage current occurrence using PSCAD/EMTDC S/W and evaluates the characteristics of leakage currents from the PCS section and grid unbalanced current. From the simulation result, the leakage current has a large influence on the battery side by confirming that the leakage current from the PCS is increased from 7[mA] to 34[mA], and the leakage current from an unbalanced load to battery housing is increased from 3.96[mA] to 10.76[mA] according to the resistance of the housings and the magnitude of the ground resistance.

A Study on Characteristics and Modeling of CMV by Grounding Methods of Transformer for ESS (ESS용 변압기의 접지방식에 의한 CMV 모델링 및 특성에 관한 연구)

  • Choi, Sung-Moon;Kim, Seung-Ho;Kim, Mi-Young;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.587-593
    • /
    • 2021
  • Since 2017, a total of 29 fire accidents have occurred in energy storage systems (ESSs) as of June 2020. The common mode voltage (CMV) is one of the electrical hazards that is assumed to be a cause of those fire accidents. Several cases of CMV that violate the allowable insulation level of a battery section are being reported in actual ESS operation sites with △-Y winding connections. Thus, this paper evaluates the characteristics of CMV. An ESS site was modeled with an AC grid, PCS, and battery sections using PSCAD/EMTDC software. As a result of a simulation based on the proposed model, it was confirmed that characteristics of CMV vary significantly and are similar to actual measurements, depending on the grounding method of the internal transformer for PCS. The insulation level of the battery section may be severely degraded as the value of CMV exceeds the rated voltage in case of a grounding connection. It was found that the value of CMV dramatically declines when the internal transformer for PCS is operated as non-grounding connection, so it meets the standard insulation level.

Advanced FEC Scheme Considering Energy and Link-Quality for Solar-Powered WSNs (태양 에너지 기반 무선 센서 네트워크에서 에너지와 링크 품질을 고려한 향상된 FEC 기법)

  • Gil, Gun Wook;Kang, Minjae;Noh, Dong Kun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.4
    • /
    • pp.83-88
    • /
    • 2020
  • In Solar-powered wireless sensor networks(SP-WSN), the battery is periodically charged, so the best use of harvested energy is more important, rather than minimizing energy consumption. Meanwhile, as is well known, the reliability of communication between sensor nodes is very limited due to the resource-constraint of sensor nodes. In this paper, we propose an advanced FEC (forward error correction) scheme which can give SP-WSN more reliability for communication. Firstly, the proposed scheme uses energy modeling to calculate the amount of surplus energy which can be utilized for extra operations, and then determines the number of additional parity bits according to this amount of surplus energy. At the same time, link quality modeling calculates the optimal parity bits for error recovery in the current data communication environment. Finally, by considering these two parity sizes, it is possible to determine the optimal parity size that can maximize the data reliability without affecting the node black out. Performance verification was performed by comparing the amount of data collected at the sink and the number of outage nodes with other schemes.

Modeling and Analysis of Vehicle Detection Using Roadside Ultrasonic Sensors in Wireless Sensor Networks (WSN 기반 노변 초음파 센서를 이용한 차량인식에 대한 모델링 및 분석)

  • Jo, Youngtae;Jung, Inbum
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.745-761
    • /
    • 2014
  • To address the problems of existing traffic information acquisition systems such as high cost and low scalability, wireless sensor networks (WSN)-based traffic information acquisition systems have been studied. WSN-based systems have many benefits including high scalability and low maintenance cost. Recently, various sensors are studied for traffic surveillance based on WSN, such as magnetic, acoustic, and accelerometer sensors. However, ultrasonic sensor based systems have not been studied. There are many issues for WSN-based systems, such as battery driven operation and low computing power. Thus, power saving methods and specific algorithms with low complexity are necessary. In this paper, we introduce optimal methodologies for power saving of ultrasonic sensors based on the modeling and analysis in detail. Moreover, a new vehicle detection algorithm for low complexity using ultrasonic data is presented. The proposed methodologies are implemented in a tiny microprocessor. The evaluation results show that our algorithm has high detection accuracy.

A Design Control System of Hybrid Underwater Glider and Performance Test (하이브리드 수중 글라이더의 제어 시스템 설계 및 성능 시험)

  • Ji, Dae-hyeong;Choi, Hyeung-sik;Kim, Joon-young;Jung, Dong-wook;Jeong, Seong-hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • In this paper, we studied the control of the hybrid underwater glider (HUG), which has the advantage of high precision route search function and long-term mission capability. Dynamic modeling of HUG is based on numerical model of the attitude controller and buoyancy engine, thruster. We designed the control part considering the smooth control and precise sailing of HUG. A buoyancy engine capable of inhaling water is designed to control the buoyancy of HUG. And mass shifter carrying the battery was designed for controlling pitching motion of HUG. A control system for controlling the buoyancy engine and the attitude controller was constructed. In order to verify performance, we performed water tank test using manufactured HUG.

Multidisciplinary Design Optimization(MDO) of a Medium-Sized Solar Powered HALE UAV Considering Energy Balancing (에너지 균형조건을 고려한 중형 태양광 추진 고고도 장기체공 무인기의 다분야 통합 최적설계)

  • Park, Kyung-Hyun;Min, Sang-Gyu;Ahn, Jon;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • A MDO study of a midium-sized solar powered High Altitude Long Endurance (HALE) UAV has been performed, focused on energy balance. In the MDO process, Vortex Lattice Method(VLM) is employed for the aerodynamic modeling of the vehicle, of which structural weight is estimated with the modeling proposed by Cruz. Tail volume ratios have been set as constants, while the location of tail surfaces is determined from longitudinal static stability criterion. By balancing the available energy from solar cells, battery, and altitude, with the energy-requirement of the vehicle, the possibility of continuous flight over 24-hours has been investigated. The solar radiation level is set as that of summer at the latitude of $36^{\circ}$ north. During the daytime, the aircraft climbs using solar energy, accumulating potential energy, which supplements energy balance during the night. Optimizations have been sought in size of the vehicle, its weight distribution, and flight strategy.

PWM Inverter System Control for Flywheel Energy Storage System using PDFF(Pseudo-Derivative Control with Feedforward Gain) Algorithm (PDFF 기법을 적용한 플라이휠 에너지 저장장치용 PWM 인버터 시스템 제어)

  • Park, Jong-Chan;Jeong, Byung-Hwan;Choi, Hee-Ryong;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.267-275
    • /
    • 2007
  • This paper presents about energy input and output modeling for a flywheel energy storage system that can store and supply mechanical energy, which is emerging as one of clean energy sources, and the analysis and control of a PWM inverter system. Moreover, this paper describes flywheel's characteristics related to variations of mechanical and electrical parameters like as voltage and current versus speed characteristics formed as numerical formula and thus simulate behaviour-status of flywheel energy. Also for comparison and analysis between PI control and PDFF control, the modeling, design and analysis to the single-phase full bridge inverter with double loop feedback control is accomplished through numerical description and simulation. Finally, under load condition 0.1[pu], 1[pu]. it is validated that harmonic characteristics for voltage and current wave is controlled within 5% below even dynamics condition.

Design of Sensor Network Security Model using Contract Net Protocol and DEVS Modeling (계약망 프로토콜과 DEVS 모델링을 통한 센서네트워크 보안 모델의 설계)

  • Hur, Suh Mahn;Seo, Hee Suk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.4
    • /
    • pp.41-49
    • /
    • 2008
  • Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes. Such attacks by compromised sensors can cause not only false alarms but also the depletion of the finite amount of energy in a battery powered network. In order to reduce damage from these attacks, several security solutions have been proposed. Researchers have also proposed some techniques to increase the energy-efficiency of such security solutions. In this paper, we propose a CH(Cluster Header) selection algorithm to choose low power delivery method in sensor networks. The CNP(Contract Net Protocol), which is an approach to solve distribution problems, is applied to choose CHs for event sensing. As a result of employing CNP, the proposed method can prevent dropping of sensing reports with an insufficient number of message authentication codes during the forwarding process, and is efficient in terms of energy saving.

Hybrid Vehicle Battery Modeling using Boundary Condition (경계조건을 반영한 하이브리드 자동차 배터리 모델링)

  • Lee, Jae-Joong;Lee, June-Sang;Bae, Hyun-Ju;Kim, Mi-Ro;Kweon, Hyck-Su;Nah, Wan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1678-1679
    • /
    • 2011
  • 고속/고전압으로 동작하는 자동차 전장품에 대한 EMI/EMC(Electromagnetic Interfere / Electromagnetic Compatibility) 문제는 기존의 PCB(Printed Circuit Board)에서의 문제와 다르며 하이브리드/전기 자동차에서 중요하게 다뤄지는 배터리에 대한 최적화 된 모델링 방법이 본 논문에 소개 되어있다. 기존의 단순한 저항과 커패시터의 연결로 표현 된 모델링이 아닌 고주파를 반영 할 수 있는 모델링 방법을 사용하였다. 이를 분석하기 위해 ANSYS사의 Simplorer와 Matlab을 사용해서 결과를 보았다. 본 논문에서는 DOD(Depth Of Discharge)에 따른 통합 등가회로 모델을 구현하면서 기존의 단순한 지수함수 곡선적합(Curve fitting)이 아닌 SOC(State Of Charge)의 경계조건을 반영하여 정확성을 높였다. 이로써 실험 데이터를 이용해 배터리 등가회로 모델링을 하여 정확한 배터리 동작의 해석을 할 수 있고 이에 따른 전도성 방사(CE : Conducted Emission)문제에 보다 쉽게 접근 할 수 있다.

  • PDF

Dynamic Analysis and Controller Design for Standalone Operation of Photovoltaic Power Conditioners with Energy Storage

  • Park, Sun-Jae;Shin, Jong-Hyun;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2004-2012
    • /
    • 2014
  • Energy storage devices are necessary to obtain stable utilization of renewable energy sources. When black-out occurs, distributed renewable power sources with energy storage devices can operate under standalone mode as uninterruptable power supply. This paper proposes a dynamic response analysis with small-signal modeling for the standalone operation of a photovoltaic power generation system that includes a bidirectional charger/discharger with a battery. Furthermore, it proposes a DC-link voltage controller design of the entire power conditioning system, using the storage current under standalone operation. The purpose of this controller is to guarantee the stable operation of the renewable source and the storage subsystem, with the power conversion of a very efficient bypass-type PCS. This paper presents the operating principle and design guidelines of the proposed scheme, along with performance analysis and simulation. Finally, a hardware prototype of 1-kW power conditioning system with an energy storage device is implemented, for experimental verification of the proposed converter system.