DOI QR코드

DOI QR Code

Advanced FEC Scheme Considering Energy and Link-Quality for Solar-Powered WSNs

태양 에너지 기반 무선 센서 네트워크에서 에너지와 링크 품질을 고려한 향상된 FEC 기법

  • Received : 2019.12.03
  • Accepted : 2020.01.14
  • Published : 2020.04.30

Abstract

In Solar-powered wireless sensor networks(SP-WSN), the battery is periodically charged, so the best use of harvested energy is more important, rather than minimizing energy consumption. Meanwhile, as is well known, the reliability of communication between sensor nodes is very limited due to the resource-constraint of sensor nodes. In this paper, we propose an advanced FEC (forward error correction) scheme which can give SP-WSN more reliability for communication. Firstly, the proposed scheme uses energy modeling to calculate the amount of surplus energy which can be utilized for extra operations, and then determines the number of additional parity bits according to this amount of surplus energy. At the same time, link quality modeling calculates the optimal parity bits for error recovery in the current data communication environment. Finally, by considering these two parity sizes, it is possible to determine the optimal parity size that can maximize the data reliability without affecting the node black out. Performance verification was performed by comparing the amount of data collected at the sink and the number of outage nodes with other schemes.

태양 에너지 기반 무선 센서 네트워크(SP-WSN) 환경에서는 주기적으로 배터리가 충전되므로 에너지 소모를 최소화하기보다는 수집된 에너지의 효율적인 사용이 중요하다. 한편, 잘 알려진 것처럼 SP-WSN을 포함하여 모든 센서 네트워크들은 사용되는 센서 노드의 특성상 성능이 제한적이므로 노드 간의 통신 신뢰도가 낮을 수밖에 없다. 본 논문에서는 위의 특성들을 고려하여 SP-WSN에서 신뢰성 있는 통신을 할 수 있는 향상된 순방향 에러정정 기법(FEC) 기법을 제안한다. 제안 기법은 우선 1) 에너지 모델링을 통해 노드가 기본 동작 외에 여분으로 사용할 수 있는 에너지양을 계산하고, 이 에너지를 최대한 활용할 수 있는 에러 복구용 패리티의 크기를 결정한다. 동시에 2) 링크 품질 모델링을 통해 현재의 데이터 통신환경에서 에러 복구에 필요한 최적의 패리티도 계산한다. 최종적으로 3) 이 두 가지 패리티의 크기를 동시에 고려함으로써 노드의 정전시간을 줄이면서, 데이터 신뢰성을 증가시킬 수 있는 패리티 크기를 결정할 수 있다. 싱크에서 수집되는 데이터양과 정전되는 노드 수를 다른 기법들과 비교함으로써 성능검증을 수행하였다.

Keywords

References

  1. S. Sudevalayam and P. Kulkarni, "Energy Harvesting Sensor Nodes: Survey and Implications," IEEE Communications Surveys and Tutorials, Vol.13, No.3, pp.443-461, 2011. https://doi.org/10.1109/SURV.2011.060710.00094
  2. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless Sensor Networks: A Survey," Computer Networks, Vol.38, No.4, pp.393-422, 2002. https://doi.org/10.1016/S1389-1286(01)00302-4
  3. Z. Tian, D. Yuan, and Q. Liang, "Energy Efficiency Analysis of Error Control Schemes in Wireless Sensor Networks," 2008 International Wireless Communications and Mobile Computing Conference, IEEE, 2008.
  4. N. Abughalieh, K. Steenhaut, and A. Nowe, "Low Power Channel Coding for Wireless Sensor Networks," 2010 17th IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT2010), IEEE, 2010.
  5. A. Angelin, B. Revathi, T. Gayathri, and M. D. Balakumaran, "Channel Coding in WSN for Energy Optimization," International Journal of Advanced Research in Electrical Electronics and Instrumentation Engineering, Vol.3, No.3, pp.7873-7878, 2014.
  6. I. S. Reed and G. Solomon, "Polynomial Codes Over Certain Finite Fields," Journal of the Society for Industrial and Applied Mathematics, Vol.8, No.2, pp.300-304, 1960. https://doi.org/10.1137/0108018
  7. D. K. Noh and T. F. Abdelzaher, "Efficient Flow-Control Algorithm Cooperating with Energy Allocation Scheme for Solar-powered WSNs," Wireless Communications and Mobile Computing, Vol.12, No.5, pp.379-392, 2012. https://doi.org/10.1002/wcm.965
  8. I. Yoon, H. Kim, and D. K. Noh, "Adaptive Data Aggregation and Compression to Improve Energy Utilization in Solarpowered Wireless Sensor Networks," Sensors, Vol.17, No.6, pp.1226, 2017. https://doi.org/10.3390/s17061226
  9. M. Kang, I. Yoon, and D. K. Noh, "Efficient Location Service for a Mobile Sink in Solar-Powered Wireless Sensor Networks," Sensors, Vol.19, No.2, pp.272, 2019. https://doi.org/10.3390/s19020272
  10. C. Tunca, S. Isik, M. Y. Donmez, and C. Ersoy, "Ring Routing: An Energy-efficient Routing Protocol for Wireless Sensor Networks with a Mobile Sink," IEEE Transactions on Mobile Computing, Vol.14, No.9, pp.1947-1960, 2014. https://doi.org/10.1109/TMC.2014.2366776
  11. J.-S. Ahn, J.-H. Yoon, and K.-W. Lee, "Performance and Energy Consumption Analysis of 802.11 with FEC Codes Over Wireless Sensor Networks," Journal of Communications and Networks, Vol.9, No.3, pp.265-273, 2007. https://doi.org/10.1109/JCN.2007.6182854
  12. Y. Yang, L. Wang, D. K. Noh, H. K. Le, and T. F. Abdelzaher, "Solarstore: Enhancing Data Reliability in Solar-powered Storage-centric Sensor Networks," Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services. ACM, 2009.
  13. M. K. Simon and M.-S. Alouini, "Digital Communication Over Fading Channels," Vol.95. John Wiley & Sons, 2005.
  14. T. Melodia, D. Pompili, and I. F. Akyildiz, "Optimal Local Topology Knowledge for Energy Efficient Geographical Routing in Sensor Networks," IEEE INFOCOM 2004. Vol.3. IEEE, 2004.