• Title/Summary/Keyword: battery energy storage system

Search Result 554, Processing Time 0.032 seconds

Development of Energy Management System for Micro-Grid with Photovoltaic and Battery system

  • Asghar, Furqan;Talha, Muhammad;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.299-305
    • /
    • 2015
  • Global environmental concerns and the ever increasing need of energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Distributed electricity generation is a suitable option for sustainable development thanks to the load management benefits and the opportunity to provide electricity to remote areas. Solar energy being easy to harness, non-polluting and never ending is one of the best renewable energy sources for electricity generation in present and future time. Due to the random and intermittent nature of solar source, PV plants require the adoption of an energy storage and management system to compensate fluctuations and to meet the energy demand during night hours. This paper presents an efficient, economic and technical model for the design of a MPPT based grid connected PV with battery storage and management system. This system satisfies the energy demand through the PV based battery energy storage system. The aim is to present PV-BES system design and management strategy to maximize the system performance and economic profitability. PV-BES (photovoltaic based battery energy storage) system is operated in different modes to verify the system feasibility. In case of excess energy (mode 1), Li-ion batteries are charged using CC-CV mechanism effectively controlled by fuzzy logic based PID control system whereas during the time of insufficient power from PV system (mode 2), batteries are used as backup to compensate the power shortage at load and likewise other modes for different scenarios. This operational mode change in PV-BES system is implemented by State flow chart technique based on SOC, DC bus voltages and solar Irradiance. Performance of the proposed PV-BES system is verified by some simulations study. Simulation results showed that proposed system can overcome the disturbance of external environmental changes, and controls the energy flow in efficient and economical way.

High Efficiency Power Conversion System for Battery-Ultracapacitor Hybrid Energy Storages (배터리-울트라커패시터 하이브리드 에너지 저장장치를 위한 고효율 전력변환 시스템)

  • Yoo, Ju-Seung;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.523-531
    • /
    • 2012
  • This paper proposes a high efficiency power conversion system for battery-ultracapacitor hybrid energy storages. The proposed system has only one bidirectional dc-dc converter for hybrid power source with batteries and ultracapacitors. The hybrid power source has bidirectional switching circuits for selecting one energy storage device. Bidirectional power flow between the energy storage device and high voltage capacitor can be controlled by one bidirectional converter. An asymmetrical switching method is applied to the bidirectional converter for high power efficiency. Switching power losses are reduced by zero-voltage switching of power switches. System operation and design considerations are presented. The experimental results are provided to verify the performance of the proposed system.

An Economic Assessment of Large-scale Battery Energy Storage Systems in the Energy-Shift Application to Korea Power System (장주기 대용량 전력저장장치의 부하이전에 대한 실계통 적용 경제성 평가 연구)

  • Park, Jong-Bae;Park, Yong-Gi;Roh, Jae-Hyung;Chang, Byung-Hoon;Toon, Yong-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.384-392
    • /
    • 2015
  • This paper presents an economic assessment of large-scale Li-ion battery energy storage systems applied to Korean power system. There are many applications of the battery energy storage systems (BESSs) and they can provide various benefits to power systems. We consider BESSs to the energy time-shift application to Korean power system and evaluate the benefits from the application of BESS in the social perspective. The mixed integer programming (MIP) algorithm is used to resolve the optimal operation schedule of the BESS. The social benefits can include the savings of the fuel cost from generating units, deferral effects of the generation capacity, delay of transmission and distribution infra construction, and incremental CO2 emission cost impacts, etc. The economic evaluation of the BESS is separately applied into Korean power systems of the Main-land and Jeju island to reflect the differences of the load and generation patterns.

Economic Evaluation by Compared Battery Energy Storage System(BESS) and Conventional Combined Cycle of power Generation Cost (복합화력발전시스템과의 발전원가 비교에 의한 전지전력저장시스템의 경제성 분석)

  • Kim, Eung-Sang;Kim, Ji-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.241-246
    • /
    • 1999
  • This paper describes the economic evaluation of battery energy storage system(BESS) for the domestic application. Application target is decided on conventional combined cycle of domestic and we analyzed economics that compared conventional combined cycle with power generation cost in development and the commercialized in case that establish it on utility and customer, urban and rural. The result shows that about the same conventional combined cycle of Anyang, Bundang and Pyungtak but more economical than seoincheon conventional combined cycle. And, in case of capacity enlargment and using the maintenance free battery more economical than conventional system.

  • PDF

Experimental Study on Bi-directional Air Cooling System for 18650 Li-ion Battery Module to Minimize Cell-to-Cell Temperature Variation (18650 Li-ion battery Module의 Cell-to-Cell 온도 편차 최소화를 위한 양방향 냉각에 대한 실험적 연구)

  • JANG, HOSUN;PARK, MINGYU;JEON, JIWHAN;PARK, SEONGSU;KIM, TAEWOO;PARK, SUNGJIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.407-418
    • /
    • 2017
  • Battery heat management is essential for high power and high energy battery system because it affects its performance, longevity, and safety. In this paper, we investigated the temperature of the 18650 Lithium Ion Battery Module used in a Energy Storage System (ESS) and the cooling method to minimize cell-to-cell temperature variation of battery module. For uniform temperature distribution within a battery module, the flow direction of the coolant in a battery module has been changed according to the time interval, and studied the effect of the cooling method on the temperature uniformity in a battery module which includes a number of battery cells. The experimental results show that bi-directional battery cooling method can effectively reduce the cell-to-cell temperature variation compared with the one-directional battery cooling. Furthermore, it is also found that bi-directional battery cooling can reduce the maximum temperature in a battery module.

Compound-Type Hybrid Energy Storage System and Its Mode Control Strategy for Electric Vehicles

  • Wang, Bin;Xu, Jun;Cao, Binggang;Li, Qiyu;Yang, Qingxia
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.849-859
    • /
    • 2015
  • This paper proposes a novel compound-type hybrid energy storage system (HESS) that inherits the unique advantages of both battery/supercapacitor (SC) and the SC/battery HESSs for electric vehicles (EVs). Eight operation modes are designed to match this system. A mode control strategy is developed for this HESS on the basis of these modes, and five classes of operation modes are established to simplify this strategy. The mode control strategy focuses on high operating efficiency and high power output. Furthermore, the compound-type HESS is designed such that the SC is the main priority in braking energy absorption. Thus, this HESS can operate efficiently and extend battery life. Simulation results also show that the compound-type HESS can not only supply adequate power to the motor inverter but can also determine suitable operation modes in corresponding conditions. Experimental results demonstrate that this HESS can extend battery life as well. The overall efficiency of the compound-type HESS is higher than those of the battery/SC and the SC/battery HESSs.

Grid-tied Power Converter for Battery Energy Storage Composed of 2-stage DC-DC Converter

  • Kim, Do-Hyun;Lee, Yoon-Seok;Han, Byung-Moon;Kim, Ju-Yong;Chae, Woo-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1400-1408
    • /
    • 2013
  • This paper proposes a new grid-tied power converter for battery energy storage, which is composed of a 2-stage DC-DC converter and a PWM inverter. The 2-stage DC-DC converter is composed of an LLC resonant converter connected in cascade with a 2-quadrant hybrid-switching chopper. The LLC resonant converter operates in constant duty ratio, while the 2-quadrant hybrid-switching chopper operates in variable duty ratio for voltage regulation. The operation of proposed system was verified through computer simulations. Based on computer simulations, a hardware prototype was built and tested to confirm the technical feasibility of proposed system. The proposed system could have relatively higher efficiency and smaller size than the existing system.

Calculating the Optimal Capacity of Battery Storage System for Power System in Je-Ju (제주지역 전력계통에 설치되는 배터리 저장장치의 최적용량 산정)

  • Lee, Jong-Hyun;Nam, Young-Woo;Ko, Won-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.8-14
    • /
    • 2010
  • In this Paper, optimal capacity of battery storage in Je-Ju is calculated. First, Electricity demand data of Je-Ju('06~'16) is estimated based on real electricity demand data of Je-Ju('06~'07). Then, the 4th power supply planning is used to calculate benefits from battery storage capacity in view of maximum power savings, preventing outages savings and energy charge fee reduction. Finally, optimal battery storage capacity is suggested.

Analysis of Connected Operations of PV Source and Li Energy Storage Equipment to Power System (태양광 전원과 리튬 에너지 저장장치의 연계운전시 특성 해석)

  • Kim, Deok Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.106-112
    • /
    • 2014
  • This paper presents the analysis of connected operation of photo voltaic source and Li energy storage system. The micro-grid has been installed and operated for several years at the campus of USF and has been a role of test bed. Photo voltaic source has been strongly influenced by the location, weather and climate of a installed area and Li battery is connected directly to the photo voltaic source to compensate for the limitations. The Li battery is operated to supply power output to the grid by the charging or discharging mode based on the average power output of the PV source which is calculated from monitored data for several years. The load of the PV and Li battery system is operated as a severe loading condition and the operating characteristics of PV source and Li battery are analyzed in detail. In connected operations of PV and Li battery to power system, the PV and Li battery is operated to supply constant power during only day time or peak time to increase load shedding ratio and efficient usage of generation sources in power system.

Stability Improvement of Battery Energy Storage System considering Synchronous Inductance Effect of Diesel Generator

  • Jo, Jongmin;An, Hyunsung;Chun, Kwan-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2254-2261
    • /
    • 2018
  • This paper analyzes stability of current control in respect of four cases of battery energy storage system (BESS) in a stand-alone microgrid. The stand-alone microgrid is composed of BESS, diesel generator and controllable loads, where all of them have a rated power of 50kW. The four cases are considered as following: 1) BESS with a stiff grid 2) BESS with the diesel generator 3) BESS with passive damping + diesel generator 4) BESS with active damping + diesel generator, and their stabilities are analyzed in the frequency domain and discrete time domain. The comparative analysis for four cases are verified through simulation and experiments through demonstration site of the stand-alone microgrid, where the DC link is connected to a 115kW battery bank composed of 48 lead-acid batteries (400AH/12V). Experimental results show a good agreement with the analysis.