• Title/Summary/Keyword: battery change

Search Result 352, Processing Time 0.028 seconds

A Study on Impedance Change Trend and Battery Life Analysis through Battery Performance Deterioration Factors

  • Mi-Jin Choi;Young-Jun Kim;Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.129-134
    • /
    • 2023
  • Although the use of batteries is rapidly increasing worldwide to improve carbon neutrality and energy efficiency, performance degradation due to the increase in the number of uses is inevitable as it is a finite resource that can be applied according to capacity and specifications. Deterioration and failure of batteries are recognized as important problems in various applications using batteries, including electric vehicles. In order to solve these problems, a diagnostic technology capable of accurately predicting battery life and grasping state information is required, but it is difficult in a non-linear form due to internal structure or chemical change. In this paper, the factors that generally cause battery performance change are directly applied to check whether there are external changes and impedance changes in the battery, and to analyze whether they affect battery life. Impedance change trends and result values were confirmed using a universal impedance spectroscopy method and a self-developed internal impedance measurement method. The results did not significantly affect the impedance change trend. It was confirmed that the increase in the number of times of battery use was prominent in the impedance change trend.

Study on cooling performance and isothermal maintenance of cylindrical type lithium-ion battery cell using phase change material (상변화물질을 활용한 원통형 리튬이온 배터리 셀의 냉각성능 및 등온유지성에 관한 연구)

  • Jae Hyung Yoon;Su Woong Hyun;Hee Jun Jeong;Dong Ho Shin
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.34-45
    • /
    • 2023
  • When lithium-ion batteries operate out of the proper temperature range, their performance can be significantly degraded and safety issues such as thermal runaway can occur. Therefore, battery thermal management systems are widely researched to maintain the temperature of Li-ion battery cells within the proper temperature range during the charging and discharging process. This study investigates the cooling performance and isothermal maintenance of cooling materials by measuring the surface temperature of a battery cell with or without cooling materials, such as silicone oil, thermal adhesive, and phase change materials during discharge process of battery by the experimental and numerical analysis. As a result of the experiment, the battery pack filled with phase change material showed a temperature reduction of 47.4 ℃ compared to the case of natural convection. It proves the advanced utility of the cooling unit using phase change material that is suitable for use in battery thermal management systems.

A Study on Battery Charging and Supply System of Electric Vehicle Using Photovoltaic Generation (태양광 발전을 이용한 전기자동차 배터리 충전 및 공급시스템에 관한 연구)

  • Choi, Hoi-Kyun
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.265-273
    • /
    • 2017
  • Recently the Paris Climate Change Accord has been officially put into effect, making global efforts to implement Greenhouse Gas (GHG) reductions, and also International environmental regulations in the automotive sector will be further strengthened. The electric vehicle, which minimizes the particulate matter generated by existing internal combustion engine automobiles, is evaluated as a representative eco-friendly automobile. However, charging the battery of an electric vehicle is not fully environment-friendly if it is fueled by electricity that is being generated by fossil fuels as an energy source. The energy generated by the photovoltaic power generation system, which is an infinite clean energy, can be used to charge an electric vehicle's battery. Currently, shortage of charging facilities, time of charging, and high battery prices are the problem of activating the supply of electric vehicles. This study is to build a conjunction between the EVBSS (Electric Vehicle Battery Supply System) and ESS (Energy Storage System), which can quickly supply the photovoltaic charged battery to the required demand. If the charged battery in the Battery Swapping Station (BSS) is swapped swiftly, it will dramatically shorten the waiting time for charging the battery. As a result, if the battery is rented when it is needed, electric vehicles can be sold without the cost of a battery, which accounts for a large portion of the total cost, then the supply of electric vehicles are expected to expand. Furthermore, it will be an important alternative to maneuver climate change by minimizing GHG emissions from internal combustion engine vehicles.

Comparative Analysis of the characteristics of Ni-rich LIB according to temperature change (온도 변화에 따른 Ni-rich LIB의 설계인자별 파라미터 특성 비교 분석)

  • Gwon, Sun-Jong;Im, Ji-Hun;Choe, Jin-Hyeok;Kim, Jong-Hun
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.131-132
    • /
    • 2018
  • The world market for BESS (Battery Energy Storage System) is growing rapidly, and battery technology is also developing. It is important to understand the battery characteristics and develop a control strategy to develop the optimal BMS (Battery Management System). In this paper, we compare and analyze the parameter characteristics of NCM LIB (Lithium Ion Battery) according to the temperature change.

  • PDF

Numerical study on battery thermal management system using phase change material with oscillating heat pipe (상변화물질과 맥동형 히트 파이프를 이용한 배터리 열 관리 시스템에 대한 수치해석적 연구)

  • Seung Hyun Park;Min Gi Chu;Dong Kee Sohn;Han Seo Ko
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.104-114
    • /
    • 2024
  • To effectively control heat generation resulting from advancements in fast discharging technology for electric vehicle batteries, hybrid Battery Thermal Management Systems (BTMS) are gaining attention. In this study, a BTMS combining Phase Change Material (PCM) with Oscillating Heat Pipe (OHP) was designed. During the phase change process of the PCM, the maximum battery temperature increased slowly. Additionally, due to the excellent heat transfer capability of the OHP, the PCM/OHP BTMS delayed the time when the maximum battery temperature exceeded 50 ℃ by 810 s compared to the PCM/copper fin BTMS, resulting in the maximum battery temperature that was 41.29 ℃ lower at 3600 s. Furthermore, in the section where the latent heat of the PCM had the greatest impact, the slope of the battery temperature difference was 0.0017 lower than that of the PCM/copper fin BTMS. Therefore, the PCM/OHP BTMS demonstrates its potential as a viable hybrid BTMS.

A study of Battery User Pattern Change tracking method using Linear Regression and ARIMA Model (선형회귀 및 ARIMA 모델을 이용한 배터리 사용자 패턴 변화 추적 연구)

  • Park, Jong-Yong;Yoo, Min-Hyeok;Nho, Tae-Min;Shin, Dae-Kyeon;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.423-432
    • /
    • 2022
  • This paper addresses the safety concern that the SOH of batteries in electric vehicles decreases sharply when drivers change or their driving patterns change. Such a change can overload the battery, reduce the battery life, and induce safety issues. This paper aims to present the SOH as the changes on a dashboard of an electric vehicle in real-time in response to user pattern changes. As part of the training process I used battery data among the datasets provided by NASA, and built models incorporating linear regression and ARIMA, and predicted new battery data that contained user changes based on previously trained models. Therefore, as a result of the prediction, the linear regression is better at predicting some changes in SOH based on the user's pattern change if we have more battery datasets with a wide range of independent values. The ARIMA model can be used if we only have battery datasets with SOH data.

Design and Development of a Public Waste Battery Diagnostic Device

  • Kim, Sang-Bum;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.281-286
    • /
    • 2022
  • In this study, design of an intuitive internal resistance diagnostic device is to diagnose the residual capacity and aging of the battery regardless of the model and the internal protocol of the waste battery through the method of measuring the internal resistance of a waste battery. In this paper, charging and discharging were continuously performed with 2A charging and 5A discharging in order to secure data on impedance changes that may occur in the charging and discharging process of various methods. As a result of the final experiment, it was confirmed that the impedance change occurred during charging and discharging, and the amount of change increased as the charging/discharging C-rate increased. In addition, it was confirmed that the waste battery aged or abnormal cell had a large change in the impedance value.

Study of Cooling Characteristics of 18650 Li-ion Cell Module with Different Types of Phase Change Materials (PCMs) (PCM 종류에 따른 18650 리튬-이온 셀 모듈의 냉각 특성 연구)

  • YU, SIWON;KIM, HAN-SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.622-629
    • /
    • 2020
  • The performance and cost of electric vehicles (EVs) are much influenced by the performance and service life of the Li-ion battery system. In particular, the cell performance and reliability of Li-ion battery packs are highly dependent on their operating temperature. Therefore, a novel battery thermal management is crucial for Li-ion batteries owing to heat dissipation effects on their performance. Among various types of battery thermal management systems (BTMS'), the phase change material (PCM) based BTMS is considered to be a promising cooling system in terms of guaranteeing the performance and reliability of Li-ion batteries. This work is mainly concerned with the basic research on PCM based BTMS. In this paper, a basic experimental study on PCM based battery cooling system was performed. The main purpose of the present study is to present a comparison of two PCM-based cooling systems (n-Eicosane and n-Docosane) of the unit 18650 battery module. To this end, the simplified PCM-based Li-ion battery module with two 18650 batteries was designed and fabricated. The thermal behavior (such as temperature rise of the battery pack) with various discharge rates (c-rate) was mainly investigated and compared for two types of battery systems employing PCM-based cooling. It is considered that the results obtained from this study provide good fundamental data on screening the appropriate PCMs for future research on PCM based BTMS for EV applications.

Design remaining capacity calculation system of a nickel-cadmium battery by using fuzzy logic (퍼지로직을 이용한 니켈-카드뮴 축전지의 잔존용량 산출 알고리즘 제안)

  • Jang, Woong-Sung;Jeon, Sun-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.355-357
    • /
    • 2004
  • In this paper, to calculate accurate remaining volume, it presents how to figure out nickel-cadmium battery algorithm. A nickel-cadmium battery has widely been used in industrial field and to military. Recent high demands on the battery caused 'How to calculate accurate remaining volume is very important task to be solved. In this paper, it says it is useful using the terminal voltage change of the resistance that can be connected with the battery and the differentiation of the terminal voltage to calculate remaining volume of nickel-cadmium battery. And these can be used for volume inference data so that it is fuzzy based system which can be helpful to inference the remaining volume by the resistance of terminal voltage change. Because of electrochemical complexity, the volume calculating system is inferencing undirectly by experimentally built DB where as current the existing volume models are suffering to be adapted.

  • PDF

Design of Fuse Elements of Current Sensing Type Protection Device for Portable Secondary Battery Protection System (휴대용 이차전지 보호 시스템용 전류 감지 동작형 보호소자의 퓨즈 가용체 설계)

  • Kang, Chang-Yong;Kim, Eun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1619-1625
    • /
    • 2018
  • Portable electronic devices secondary batteries can cause fire and explosion due to micro-current change in addition to the situation of short-circuit inrush current, safety can not be secured with a general operation limited current fuse. Therefore, in secondary battery, it is necessary for the protector to satisfy both the limit current type operation in the open-short-circuit inrush current and the current detection operation characteristic in the micro current change situation and for this operation, a fuse for the current detection type secondary battery protection circuit can be applied. The purpose of this study is to design a protection device that operates stably in the hazardous situation of small capacity secondary battery for portable electronic devices through the design of low melting fuse elements alloy of sensing type fuse and secures stability in abnormal current state. As a result of the experiment, I-T and V-T operation characteristics are satisfied in a the design of the alloy of the current sensing type self-contained low melting point fuse and the resistance of the heating resistor. It is confirmed that it can prevent accidents of short circuit over-current and micro current change of secondary battery.