• Title/Summary/Keyword: bath additive

Search Result 61, Processing Time 0.031 seconds

Study of Stress Changes in Nanocrystalline Ni Thin Films Eletrodeposited from Chloride Baths (Chloride Bath로부터 전기도금된 나노결정립 니켈 박막의 잔류응력 변화에 대한 연구)

  • Park, Deok-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.163-170
    • /
    • 2011
  • Nanocrystalline Ni thin films were electodeposited from chloride baths to investigate the influences of additive concentration, current density and solution pH on residual (or internal) stress, surface morphology, and microstructure of the films. It was observed that residual stress in Ni thin film was changed from tensile stress mode (about 150 MPa) to compressive stress mode (about -100 MPa) with increasing saccharin concentration as an additive. Microstructure of Ni thin films was changed with/without saccharin in baths. Ni thin films electrodeposited from saccharinfree bath mainly consisted of both FCC(111) and FCC(200) phases. However, Ni thin film electrodeposited from the baths containing saccharin exhibited FCC(111), FCC(200) and FCC (311) phases [sometimes, FCC (220)]. Current density influenced residual stress of Ni thin films. It was measured to be the lowest compressive stress value (about-100 MPa) in range of current density of $2.5\sim10mA{\cdot}cm^{-2}$. Solution pH also influenced residual stress of Ni thin film. Addition of saccharin in baths affected grain size of Ni thin films. Grain sizes of Ni thin films were measured to be about 60 nm without saccharin and 24~38 nm with more than 0.0005M saccharin concentration. Surface of Ni thin films was changed from nodular to smooth surface morphology with addition of saccharin.

Electrodeposition of Permalloy-Silica Composite Coating (전기도금법을 이용한 퍼멀로이-실리카 복합도금)

  • Jung, Myung-Won;Kim, Jong-Hoon;Lee, Heung-Yeol;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.83-88
    • /
    • 2010
  • The composite electroplating is accomplished by adding inert materials during the electroplating. Permalloy is the term for Ni-Fe alloy and it is used for industrial applications due to its high magnetic permeability. Microhardness for microdevices is enhanced after composite coating and it increases the life cycle. However, the hydroxyl group on the silica makes their surface susceptible to moisture and it causes the silica nanoparticles to be agglomerated in the aqueous solution. The agglomeration problem causes poor dispersion which eventually interrupts uniform deposition of silica nanoparticles. In this study, the dispersion of silica nanoparticles in the permalloy electroplated layer is reported with variation of additives and sonication time. Longer sonication period guaranteed better silica nanopowder dispersion and sonication period also influenced on composition of deposits. The amount of silica nanopowder codeposition and surface morphologies were influenced with variation of additives. In alkaline bath, smooth surface morphology and relatively high contents of silica nanopowder codeposition were obtained with addition of sodium lauryl sulfate.

Effect of spinning parameters of polyethersulfone based hollow fiber membranes on morphological and mechanical properties

  • Tewfik, Shadia R.;Sorour, Mohamed H.;Shaalan, Hayam F.;Hani, Heba A.
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • Hollow fiber (HF) membranes are gaining wide interest over flat membranes due to their compaction and high area to surface volume ratio. This work addresses the fabrication of HF from polysulfone (PS) and polyethersulfone (PES) using N-methylpyrrolidone (NMP) as solvent in addition to other additives to achieve desired characteristics. The semi-pilot spinning system includes jacketed vessel, four spinneret block, coagulation and washing baths in addition to dryer and winder. Different parameters affecting dry-wet spinning phase inversion process were investigated. Dope compositions of PES, NMP and polyvinyl pyrrolidone (PVP) of varying molecular weights as additive were addressed. Some critical parameters of importance were also investigated. Those include dope flow rate, air gap, coagulation & washing baths and drying temperatures. The measured dope viscosity was in the range from 1.7 to 36.5 Pa.s. Air gap distance was adjusted from 20 to 45 cm and coagulation bath temperature from 20 to $46^{\circ}C$. The HF membranes were characterized by scanning electron microscope (SEM), atomic force microscope (AFM) and mechanical properties. Results indicated prevalence of finger like structure and average surface roughness from about 29 to 78.3 nm. Profile of stress strain characteristics revealed suitability of the fibers for downstream interventions for fabrication of thin film composite membrane. Different empirical correlations were formulated which enable deeper understanding of the interaction of the above mentioned variables. Data of pure water permeability (PWP) confirmed that the fabricated samples fall within the microfiltration (MF)-ultrafiltration (UF) range of membrane separation.

Influence of OH- Ion Concentration on the Properties of Eelectrolytic Plasma Oxide Coatings Formed on AZ61A Alloy (전해 플라즈마 공정에 의해 AZ61A 합금에 형성된 산화물층의 특성에 미치는 OH- 이온 농도의 영향)

  • Shin, Seong Hun;Jeong, Young Seung;Rehman, Zeeshan Ur;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.513-520
    • /
    • 2016
  • The effect of NaOH concentration on the properties of electrolytic plasma processing (EPP) coating formed on AZ61A Mg alloy is studied. Various types of EPP were employed on magnesium alloy AZ61A in a silicate bath with different concentrations of NaOH additive. Analysis of the composition and structure of the coating layers was carried out using an X-ray diffractometer (XRD) and a scanning electron microscope (SEM). The results showed that the oxide coating layer mainly consisted of MgO and $Mg_2SiO_4$; its porosity and thickness were highly dependent on the NaOH concentration. The Vickers hardness was over 900 HV for all the coatings. The oxide layer with 3 g/l of NaOH concentration exhibited the highest hardness value (1220 HV) and the lowest wear rate. Potentiodynamic testing of the 3 g/l NaOH concentration showed that this concentration had the highest corrosion resistance value of $2.04{\times}10^5{\Omega}cm^2$; however, the corrosion current density value of $5.80{\times}10^{-7}A/cm^2$ was the lowest such value.

Electrodeposition of SnS Thin film Solar Cells in the Presence of Sodium Citrate

  • Kihal, Rafiaa;Rahal, Hassiba;Affoune, Abed Mohamed;Ghers, Mokhtar
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.206-214
    • /
    • 2017
  • SnS films have been prepared by electrodeposition technique onto Cu and ITO substrates using acidic solutions containing tin chloride and sodium thiosulfate with sodium citrate as an additive. The effects of sodium citrate on the electrochemical behavior of electrolyte bath containing tin chloride and sodium thiosulfate were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were characterized by XRD, FTIR, SEM, optical, photoelectrochemical, and electrical measurements. XRD data showed that deposited SnS with sodium citrate on both substrates were polycrystalline with orthorhombic structures and preferential orientations along (111) directions. However, SnS films with sodium citrate on Cu substrate exhibited a good crystalline structure if compared with that deposited on ITO substrates. FTIR results confirmed the presence of SnS films at peaks 1384 and $560cm^{-1}$. SEM images revealed that SnS with sodium citrate on Cu substrate are well covered with a smooth and uniform surface morphology than deposited on ITO substrate. The direct band gap of the films is about 1.3 eV. p-type semiconductor conduction of SnS was confirmed by photoelectrochemical and Hall Effect measurements. Electrical properties of SnS films showed a low electrical resistivity of $30{\Omega}cm$, carrier concentration of $2.6{\times}10^{15}cm^{-3}$ and mobility of $80cm^2V^{-1}s^{-1}$.

A Study of Kirkendall Void Formation and Impact Reliability at the Electroplated Cu/Sn-3.5Ag Solder Joint (전해도금 Cu와 Sn-3.5Ag 솔더 접합부의 Kirkendall void 형성과 충격 신뢰성에 관한 연구)

  • Kim, Jong-Yeon;Yu, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.33-37
    • /
    • 2008
  • A noticeable amount of Kirkendall voids formed at the Sn-3.5Ag solder joint with electroplated Cu, and that became even more significant when an additive was added to Cu electroplating bath. With SPS, a large amount of voids formed at the $Cu/Cu_3Sn$ interface of the solder joint during thermal aging at $150^{\circ}C$. The in-situ AES analysis of fractured joints revealed S segregation on the void surface. Only Cu, Sn, and S peaks were detected at the fractured $Cu/Cu_3Sn$ interfaces, and the S peak decreased rapidly with AES depth profiling. The segregation of S at the $Cu/Cu_3Sn$ interface lowered interface energy and thereby reduced the free energy barrier for the Kirkendall void nucleation. The drop impact test revealed that the electrodeposited Cu film with SPS degraded drastically with aging time. Fracture occurred at the $Cu/Cu_3Sn$ interface where a lot of voids existed. Therefore, voids occupied at the $Cu/Cu_3Sn$ interface are shown to seriously degrade drop reliability of solder joints.

  • PDF

Preparation and Characterization of PVdF-HFP Microporous Membranes for Li-ion Rechargeable Battery (Poly(vinylidene fluoride-hexafluoropropylene)를 이용한 이차전지용 미세다공성 분리막의 제조와 물성)

  • Nam, Sang-Yong;Yu, Dae-Hyun;Jeong, Mi-Ae;Rhim, Ji-Won;Byun, Hong-Sik;Yoo, Hyun-Oh;Kim, Jong-Man;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.359-368
    • /
    • 2007
  • The copolymer membranes, poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) were prepared by phase inversion method using as an additive with N,N-dimethylformamid as a solvent. The pores are generated during the solvent and non-solvent exchange process in the coagulation bath filled with non-solvent (distilled water). The highest porosity of the membrane was 60%. The surface and cross-section of the membranes was observed with a scanning electron microscopy (SEM). The mechanical property of the membrane was determined by using an universal testing machine (UTM). Tensile strength of measured membranes is presented the maximum 6.57 MPa at 30 wt% of PVdF-HFP.

Effects of OYakSoonGi-San extract on Hypertension and Common Carotid Artery (오약순기산(烏藥順氣散)이 고혈압과 동맥혈관에 미치는 영향)

  • Shin, Hyung-Sup;Ko, Heung;Kim, Ho-Hyun
    • Korean Journal of Oriental Medicine
    • /
    • v.10 no.2
    • /
    • pp.79-92
    • /
    • 2004
  • Objectives : This experiments were performed to determine the effect of OYakSoonGi-San extract on hypertension in spontaneous hypertensive rat and norepinephrine-induced arterial contraction in rabbit. Methods : In order to define the effect of OYakSoonGi-San extract on contracted rabbit carotid arterial strips, transverse strips with intact or damaged endothelium were used for the experiment using organ bath. To analyze the mechanism of OYakSoonGi-San extract-induced relaxation, OYakSoonGi-San extract infused into contracted arterial strips induced by norepinephrine after treatment of indomethacin, $N{\omega}-nitro-L-arginine$, methylene blue or tetraethylammonium chloride. Results : Blood pressure was significantly decreased five days after administration of OYakSoonGi-San extract. The relaxation effect of OYakSoonGi-San extract was dependent on the presence of endothelium, showing that OYakSoonGi-San extract-induced relaxation was not observed in the strips without endothelium. Also OYakSoonGi-San extract-induced relaxation was significantly inhibited in arterial strips which were contracted by high $K^+$. OYakSoonGi-San extract-indeced relaxation was significantly inhibited by the pre-treatment of $N{\omega}-nitro-L-arginine$ or methylene blue, but it was not observed in the strips pre-treated with indomethacin or tetraethylammonium chloride. When additive application of $Ca^{2+}$ in arterial strips which were pre-contracted by norepinephrine in a $Ca^{2+}$-free solution, arterial contraction was increased. But contractile response to $Ca^{2+}$ was attenuated by pre-treatment of OYakSoonGi-San extract. Conclusions : These results demonstrated that OYakSoonGi-San could be applied effectively to hypertension and may inhibit agonist-induced contraction through an decrease influx of extra-cellular $Ca^{2+}$ by the formation of nitric oxide in the vascular endothelial cells.

  • PDF

Formation of Copper Seed Layers and Copper Via Filling with Various Additives (Copper Seed Layer 형성 및 도금 첨가제에 따른 Copper Via Filling)

  • Lee, Hyun-Ju;Ji, Chang-Wook;Woo, Sung-Min;Choi, Man-Ho;Hwang, Yoon-Hwae;Lee, Jae-Ho;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.335-341
    • /
    • 2012
  • Recently, the demand for the miniaturization of printed circuit boards has been increasing, as electronic devices have been sharply downsized. Conventional multi-layered PCBs are limited in terms their use with higher packaging densities. Therefore, a build-up process has been adopted as a new multi-layered PCB manufacturing process. In this process, via-holes are used to connect each conductive layer. After the connection of the interlayers created by electro copper plating, the via-holes are filled with a conductive paste. In this study, a desmear treatment, electroless plating and electroplating were carried out to investigate the optimum processing conditions for Cu via filling on a PCB. The desmear treatment involved swelling, etching, reduction, and an acid dip. A seed layer was formed on the via surface by electroless Cu plating. For Cu via filling, the electroplating of Cu from an acid sulfate bath containing typical additives such as PEG(polyethylene glycol), chloride ions, bis-(3-sodiumsulfopropyl disulfide) (SPS), and Janus Green B(JGB) was carried out. The desmear treatment clearly removes laser drilling residue and improves the surface roughness, which is necessary to ensure good adhesion of the Cu. A homogeneous and thick Cu seed layer was deposited on the samples after the desmear treatment. The 2,2'-Dipyridyl additive significantly improves the seed layer quality. SPS, PEG, and JGB additives are necessary to ensure defect-free bottom-up super filling.

cAMP-Dependent Signalling is Involved in Adenosine-Stimulated $Cl^-$ Secretion in Rabbit Colon Mucosa

  • Oh, Sae-Ock;Kim, Eui-Yong;Jung, Jin-Sup;Woo, Jae-Suk;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.521-527
    • /
    • 1998
  • An important property of the intestine is the ability to secrete fluid. The intestinal secretion is regulated by a number of substances including vasoactive intestinal peptide (VIP), ATP and different inflammatory mediators. One of the most important secretagogues is adenosine during inflammation. However, the controversy concerning the underlying mechanism of adenosine-stimulated $Cl^-$ secretion in intestinal epithelial cells still continues. To investigate the effect of adenosine on $Cl^-$ secretion and its underlying mechanism in the rabbit colon mucosa, we measured short circuit current ($I_{SC}$) under automatic voltage clamp with DVC-1000 in a modified Ussing chamber. Adenosine, when added to the basolateral side of the muocsa, increased $I_{SC}$ in a dose-dependent manner. The adenosine-stimulated $I_{SC}$ response was abolished when $Cl^-$ in the bath solution was replaced completely with gluconate. In addition, the $I_{SC}$ response was inhibited by a basolateral Na-K-Cl cotransporter blocker, bumetanide, and by apical $Cl^-$ channel blockers, dephenylamine-2-carboxylate (DPC), 5-nitro-2-(3-phenyl-propylamino)-benzoate (NPPB), glibenclamide. Amiloride, an epithelial $Na^+$ channel blocker, and 4,4-diisothiocyanato-stilbene-2,2-disulphonate (DIDS), a $Ca^{2+}-activated$ $Cl^-$ channel blocker, had no effect. In the mucosa pre-stimulated with forskolin, adenosine did not show any additive effect, whereas carbachol resulted in a synergistic potentiation of the $I_{SC}$ response. The adenosine response was inhibited by 10 ${\mu}M$ H-89, an inhibitor of protein kinase A. These results suggest that the adenosine-stimulated $I_{SC}$ response is mediated by basolateral to apical $Cl^-$ secretion through a cAMP-dependent $Cl^-$ channel. The rank order of potencies of adenosine receptor agonists was $5'-(N-ethylcarboxamino)adenosine(NECA)>N^6-(R-phenylisopropyl)adenosine(R-$ PIA)>2-[p-(2-carbonylethyl)-phenyl-ethylamino]-5'-N-ethylcarboxaminoadenosine(CGS21680). From the above results, it can be concluded that adenosine interacts with the $A_{2b}$ adenosine receptor in the rabbit colon mucosa and a cAMP-dependent signalling mechanism underlies the stimulation of $Cl^-$ secretion.

  • PDF