• Title/Summary/Keyword: batch size

Search Result 431, Processing Time 0.029 seconds

Predicton and Elapsed time of ECG Signal Using Digital FIR Filter and Deep Learning (디지털 FIR 필터와 Deep Learning을 이용한 ECG 신호 예측 및 경과시간)

  • Uei-Joong Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.563-568
    • /
    • 2023
  • ECG(electrocardiogram) is used to measure the rate and regularity of heartbeats, as well as the size and position of the chambers, the presence of any damage to the heart, and the cause of all heart diseases can be found. Because the ECG signal obtained using the ECG-KIT includes noise in the ECG signal, noise must be removed from the ECG signal to apply to the deep learning. In this paper, Noise included in the ECG signal was removed by using a lowpass filter of the Digital FIR Hamming window function. When the performance evaluation of the three activation functions, sigmoid(), ReLU(), and tanh() functions, which was confirmed that the activation function with the smallest error was the tanh() function, the elapsed time was longer when the batch size was small than large. Also, it was confirmed that result of the performance evaluation for the GRU model was superior to that of the LSTM model.

A Study on the Basic Property of Mortar as the Grading Distribution of Copper Slag Used as Fine Aggregate (잔골재로 사용한 동슬래그의 입도에 따른 모르타르의 기초적 특성 연구)

  • Lee Jong-Chan;Lee Mun-Hwan;Lee Sea-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.97-100
    • /
    • 2005
  • The purpose of this study is to research the basic property of mortar as the grading distribution of copper slag used as fine aggregate and the results are as follows. The compressive strength of mortar as the size of largest diameter of copper slag granule is the highest when the largest size is in 2.5-5mm, and flow of mortar is in proportion to the size. As the largest size of copper slag particle is under 2.5mm(Type 1) the compressive strength and flow is higher as the big granules is more included than small ones. As the largest size of copper slag granule is under 5mm(Type 2) the compressive strength and flow is similar to situation of Type 1, except compressive strength is higher as the percent of the size of granule in $2.5\~5mm$ is under 35$\%$. F.M.(Fine Modulus), compressive strength and flow is relative each other except the batch with 2.5$\∼$5mm granule size of copper slag.

  • PDF

A study on the improvement of work flow and productivity in complex manufacturing line by employing the effective process control methods (복잡한 생산라인에서 효율적 공정관리 기법 도입에 따른 공정흐름 및 생산성 개선 연구)

  • Park, Kyungmin;Jeong, Sukjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.305-315
    • /
    • 2016
  • Due to the change from small volume production to small quantity batch production systems, individual companies have been attempting to produce a wide range of operating strategies, maximize their productivity, and minimize their WIP level by operating with the proper cycle time to defend their market share. In particular, using a complex workflow and process sequence in the manufacturing line has some drawbacks when it comes to designing the production strategy by applying analytical models, such as mathematical models and queueing theory. For this purpose, this paper uses three heuristic algorithms to solve the job release problem at the bottleneck workstation, product mix problem in multi-purpose machine(s), and batch size and sequence in batch machine(s). To verify the effectiveness of the proposed methods, a simulation analysis was performed. The experimental results demonstrated that the combined application of the proposed methods showed positive effects on the reduction of the cycle time and WIP level, and improvement of the throughput.

Effects of Particle Size and Temperature on the Ammonium Ion Exchange by Natural Zeolite (천연제올라이트의 암모늄이온교환에 미치는 입자 크기 및 온도영향에 관한 연구)

  • Song, Chang Soo;Kim, Hee Jun;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.75-80
    • /
    • 1998
  • Ammonium ion is notorious for the adverse effects upon many of the important uses of water such as toxcity to fish, corrosion of metals and concrete, and concern over man's consumption. A clinoptilolite, which is a naturally occurring zeolite selective for ammonium ion exchange, has been used. Batch isotherm experiments were conducted for measuring ammonium ion exchange capacity. The ion exchange capacity was well described either by the Langmuir equation or by the Freundlich equation. As the particle size of the clinoptilolite decreased, exchange capacity was increased. The smaller particle size enhaced the exchange of ammonium ion due to the greater surface area and decreased diffusion to the exchange sites within the zeolite. Ammonium ion exchange capacity tended to decrease when the temperature increased from $20^{\circ}C$ to $35^{\circ}C$, and the temperature correction factor was found to be 0.98 in the Langmuir equation.

  • PDF

Microstructural Change in Rheocast AZ91D Magnesium Alloys with Stirring Rate and Isothermal Stirring Temperature (교반속도 및 등온교반온도에 따른 AZ91D 마그네슘합금 반응고 주조재의 미세조직 변화)

  • Yim, Chang-Dong;Shin, Kwang-Seon
    • Journal of Korea Foundry Society
    • /
    • v.23 no.3
    • /
    • pp.130-136
    • /
    • 2003
  • Rheocasting of AZ91D magnesium alloys yielded the microstructure consisted of the spherical primary particles in the matrix which is different from conventional casting. Rheocast ingots were produced under various processing conditions using batch type rheocaster. Morphology of primary particles was changed from rosette-shape to spherical shape with increasing stirring rate$(V_s)$ and decreasing isothermal stirring temperature$(T_s)$. With increasing $V_s$, more effective shearing between the particles occurred rather than the agglomeration and clustering, so the primary particle size decreased. But with decreasing $T_s$, primary particle size increased mainly due to sintering and partially Ostwald ripening. The sphericity of primary particles increased with increasing $V_s$ and decreasing $T_s$ due to enhanced abrasion among the primary particles. The uniformity of primary particle size increased with increasing Vs and $T_s$.

The Influence of Food Hydrocolloids on Changes in the Physical Properties of Ice Cream

  • Park, Sung-Hee;Hong, Guen-Pyo;Kim, Jee-Yeon;Choi, Mi-Jung;Min, Sang-Gi
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.721-727
    • /
    • 2006
  • This study was carried out to investigate the effect of hydrocolloids on the changes in physical properties of a model ice cream. The model ice cream contained water, sugar, skin milk powder, com oil, and 4 different hydrocolloid stabilizers (gelatin, pectin, hydroxyethylstarch, locust bean gum), was manufactured in a batch type freezer. The following physical characteristics of ice cream were examined: flow behavior, overrun, air cell size, ice crystal size, and melt resistance. With regard to flow behavior, all of aged mixes had a lower apparent viscosity relative to the mix before aging, and ice cream mix containing locust bean gum had the highest viscosity. Air cell size was observed to range from 20 to $38\;{\mu}m$, and ice cream with locust bean gum showed the largest size. There was an inverse correlation between overrun and air cell size. The ice crystal sizes of all samples ranged from 25 to $35\;{\mu}m$. Ice cream with added pectin contained the smallest ice crystal size, which was significantly difference from other stabilizers (p<0.05), and resulted in superior melt resistance with increased melting time compared to other samples.

Quality Characteristics and Optimization of Premix-Type Buckwheat Soksungjang (메밀 속성 장 프리믹스 제조 및 품질특성)

  • Lee, Sun Young;Ahn, Yu Jin;Kim, Ji Yeon;Song, Jin;Choi, Hye-Sun
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.753-758
    • /
    • 2013
  • This study evaluated the quality characteristics for optimization of premix-type Buckwheat (Fagopyrum esculentum) Soksungjang (BS). First, according to the amount of salt (8, 10, 12%), coliform counts were not detected in BS with 10 or, 12% salt at 21 days and Bacillus subtilis HJ 18-4 as a starter at 7 days. Therefore, 10% salt with starter culture might be considered as suitable conditions for safety. Second, according to the ratio of water (1:1, 1:1.5, 1:1.8), BS prepared with the same weights of meju powder and water showed the highest aminotype nitrogen content (688.76mg%) at 35 days; thus, an adequate fermentation state was established at this condition compared to others. Third, according to the type of container (pot, plastic, glass), the aminotype nitrogen contents were higher in the plastic container and pot than in the glass bottle. Lastly, according to the batch size (1.25, 2.5 kg), the coliform of the 2.5 kg sample decreased faster than that of 1.25 kg samples at 14 days. These results suggest that BS prepared with the same ratio of water and meju powder fermented with HJ 18-4 as a starter and 10% salt in a pot, plastic container (3 weeks) and glass container (4 weeks) showed desirable fermentation qualities.

Reclamation of Waste Lubricating Oil Using Ceramic Micro/Ultrafiltration Composite Membrances (세라믹 정밀/한외여과 복합막을 이용한 폐윤활유 정제)

  • 김계태;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.403-409
    • /
    • 2000
  • The permeation characteristics and reclamation efficiency of waste lubricating oil were studied as a function of the types of ceramic composite membranes and the membrane separation process variables. The oil permeability of the TiO2 composite membrane(pore size 0.015 $\mu\textrm{m}$) was directly proportional to the crossflow velocity(0.22∼0.9 m/s) and temperature(150$^{\circ}C$∼200$^{\circ}C$). In the batch concentration process, as the concentration factor increased, both the permeability and the ash content of the permeate decreased. The average ash contents of the total permeate through the A6 alumina membrane(average pore size 0.8$\mu\textrm{m}$), Z1/A6 and Z1/A4(pore size 0.23$\mu\textrm{m}$)/A7(pore size 6$\mu\textrm{m}$) zirconia composite membrances(average pore size 0.07$\mu\textrm{m}$) were about 0.063 wt%, 0.045wt% and 0.08wt% in the region of 1∼2 concentration factor, respectively. The ash content of the mixed permeate through the A6 alumina and zirconia composite membrane was about 0.06 wt% and it can be also reduced to 0.06 wt% in the Z1/A6 membrane and below 0.003 wt% in the TiO2/Z1/A6 membrane. It was concluded that the treated oil obtained from the multi-step membrane separation process could be used as reclaimed lubricating oil as well as reclained fuel oil.

  • PDF

Investigation on Flocculi-floc Interaction and Flocculation in Extracellular Polymeric Substances, Ionic Species and Clay-containing Suspension (생체고분자물질 농도와 이온강도에 따른 점토입자 현탁액의 응집핵-응집체 이군집 응집 특성 연구)

  • Kim, Jae In;Lee, Byung Joon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.185-193
    • /
    • 2020
  • Bimodal flocculation describes the aggregation and breakage processes of the flocculi (or primary particles) and the flocs in the water environment. Bimodal flocculation causes bimodal size distribution with the two separate peaks of the flocculi and the flocs. Extracellular polymeric substances and ionic species common in the water environment increase the occurrence of bimodal flocculation and flocculi-floc size distribution, under the flocculation mechanisms of electrostatic attraction and polymeric bridging. This study investigated bimodal flocculation and flocculi-floc size distribution, with respect to the extracellular polymeric substance concentration and ionic strength in the kaolinite-containing suspension. The batch flocculation tests comprising 0.12 g/L of kaolinite showed that the highest flocculation potential occurred at the lowest xanthan gum (as extracellular polymeric substances) concentration, under all the ionic strengths of 0.001, 0.01, and 0.1 M NaCl. Also, it was important to note that the higher ionic strength resulted in the higher flocculation potential, at all the xanthan gum concentrations. The bimodal flocculation and flocculi-floc size distribution became apparent in the experimental conditions, which had low and intermediate flocculation potential. Besides the polymeric bridging flocculation, steric stabilization increased the flocculi mass fraction against the floc mass fraction, thereby developing the bimodal size distribution.

Preparation of Micron-size Monodispersed PMMA/PDVB and PS/PDVB Particles by Multi-staged Seeded Emulsion Polymerization (다단계 유화중합을 이용한 마이크론 크기의 PMMA/PDVB 및 PS/PDVB 단분산 입자의 제조)

  • Choi, Bong-Cheol;Um, Ki-Beom;Byun, Ja-Hoon;Park, Hong-Soo;Wu, Jong-Pyo;Baik, Baik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.370-379
    • /
    • 2004
  • Highly crosslinked micron-size monodispersed PMMA/PDVB and PS/PDVB particles were prepared using seeded multi-stage emulsion polymerization. PMMA and PS seed particles were synthesized by seeded multi-stage emulsion polymerization and soap-free emulsion polymerization. Then PMMA/PDVB and PS/PDVB particles were obtained using semi-batch type emulsion polymerized using divinyl benzene as a cross-linkable monomer in the presence of seed particles. PMMA particles with size of ca. 730 nm and polydispersity of 1.03 were successfully prepared in this experiment. PS particles with size of ca. 1.5 ${\mu}m$ and polydispersity of 1.01 were prepared in this experiment. Highly crosslinked PS/PDVB particles with size of ca. 1.3 ${\mu}m$ and polydispersity of 1.00 were obtained.