• Title/Summary/Keyword: batch fermentation

Search Result 487, Processing Time 0.025 seconds

Production of Recombinant Hirudin in Galactokinase-deficient Saccharomyces cerevisiae by Fed-batch Fermentation with Continuous Glucose Feeding

  • Srinivas Ramisetti;Kang, Hyun-Ah;Rhee, Sang-Ki;Kim, Chul-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.3
    • /
    • pp.183-186
    • /
    • 2003
  • The artificial gene coding for anticoagulant hirudin was placed under the control of the GAL 10 promoter and expressed in the galactokinase-deficient strain (Δgal1) of Saccharomyces cerevisiae, which uses galactose only as a gratuitous inducer in order to avoid its consumption. For efficient production of recombinant hirudin, a carbon source other than galactose should be provided in the medium to support growth of the Δgal1 strain. Here we demonstrate the successful use of glucose in the fed-batch fermentation of the Δgal1 strain to achieve efficient production of recombinant hirudin, with a yield of up to 400 mg hirudin/L.

Production of Acetic Acid from Cellulosic Biomass (섬유성 바이오매스를 이용한 Acetic Acid 생산)

  • 우창호;박준호;윤현희
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.458-463
    • /
    • 2000
  • Production of acetic acid from cellulosic biomass by Simultaneous Saccharification and Extractive Fermentation (SSEF) was investigated. The homoacetate organism used in this study was a strain of Clostridium thermoaceticum, ATCC # 49707. A batch operation of Simultaneous Saccharification and Fermentation(SSF) using ${\alpha}$-cellulose at pH 5.5 and 55$^{\circ}C$ yielded 40% conversion of cellulose to acetic acid, while a fed-batch SSF operation produced a maximum acetic acid concentration of 25 g/L, with 50% overall yield. In-situ extractive fermentation to reduce the end-product inhibition on both bacteria and enzyme was carried out. in a batch SSEF using 200 g/L IRA-400 resin, acetic acid concentration reached to 23.9 g/L and acetic acid yield and productivity were observed to be 48% and 0.20 g/L-hr, respectively.

  • PDF

A Study on the Production of Xanthan Gum by Xanthomonas campestris (Xanthomonas campestris에 의한 Xanthan gum 생산에 관한 연구)

  • 김재형;유영제이기영윤종선
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.25-35
    • /
    • 1990
  • In the Xanthan gum fermentation by Xanthomonas campestris there are problems of the large energy consumption by long fermentation time, the mass transfer of oxygen and nutrients by high viscous fermentation broth. In this study, the media optimization and the fed batch fermentation were carried out to decrease fermentation time and increase Xanthan gum yield. The $O_2$ uptake rate (OUR) and $CO_2$ evolution rate(CER) which were obtained from the analysis of fermentation exit gas using a gas chromatograph were investigated. As a result, the fermentation time decreased at optimal assimilable nitrogen concentration but increased at poor or rich assimilable nitrogen concentration, the Xanthan gum biosynthesis was stimulated under the limited condition of assimilable nitrogen source and the optimum fermentation medium was obtained as follow; Glucose=30g / l, Peptone=8.0g / l, $K_2HPO_4=2.0g/l$, $MgS0_47H_2O=10g/l$, Sodium acetate=20g/l, Sodium pyruvate=0.5g/1. As the agitation speed and nitrogen concentration increased, the $O_2$ uptake rate and $CO_2$ evolution rate increased. The OUR and CER were 37.3mmol $O_2/\;l$ hr and 20.2 mmol $CO_2/\;L$ hr at peptone 11g / l and agitation speed 990RPM, respectively. In fed batch fermentation, the final concentration of Xanthan gum was enhanced up to 29g / l.

  • PDF

High xylitol production rate of osmophilic yeast Candida tropicalis by long-term cell-recycle fermentation in a submerged membrane bioreactor

  • Kwon, Seun-Gyu;Park, Seung-Won;Oh, Deok-Kun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.272-276
    • /
    • 2005
  • Candida tropicalis, an osmophilic strain isolated from honeycomb, produced xylitol at a maximal volumetric production rate of 3.5 g $l^{-1}$ $h^{-1}$ from an initial xylose concentration of 200 g $l^{-1}$. Even with a very high xylose concentration, e.g., 350 g $l^{-1}$, this strain produced xylitol at a moderate rate of 2.07 g $l^{-1}$ $h^{-1}$. In a fed-batch fermentation of xylose and glucose, 260 g $l^{-1}$ of xylose was added, and xylitol production was 234 g $l^{-1}$ for 48 h, corresponding to a rate of 4.88 g $l^{-1}$ $h^{-1}$. To increase the xylitol production rate, cells were recycled in a submerged membrane bioreactor with suction pressure and air sparging. In cell-recycle fermentation, the average concentration of xylitol produced per recycle round, total fermentation time, volumetric production rate, and product yield for ten rounds were 180 g $l^{-1}$, 195 h, 8.5 g $l^{-1}$ $h^{-1}$, and 85%, respectively. When cell-recycle fermentation was started with the cell mass contratrated two-fold after batch fermentation and was performed for ten recycle rounds, we achieved a very high production rate of 12 g $l^{-1}$ $h^{-1}$. The production rate and total amount of xylitol produced in cell-recycle fermentation were 3.4 and 11 times higher than in batch fermentation, respectively.

  • PDF

Kinetics of Kojic Acid Fermentation by Aspergillus flavus Link S44-1 Using Sucrose as a Carbon Source under Different pH Conditions

  • Rosfarizan M.;Ariff A.B.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.72-79
    • /
    • 2006
  • Kojic acid production by Aspergillus flavus strain S44-1 using sucrose as a carbon source was carried out in a 250-mL shake flask and a 2-L stirred tank fermenter. For comparison, production of kojic acid using glucose, fructose and its mixture was also carried out. Kojic acid production in shake flask fermentation was 25.8 g/L using glucose as the sole carbon source, 23.6 g/L with sucrose, and 6.4 g/L from fructose. Reduced kojic acid production (13.5 g/L) was observed when a combination of glucose and fructose was used as a carbon source. The highest production of kojic acid (40.2 g/L) was obtained from 150 g/L sucrose in a 2 L fermenter, while the lowest kojic acid production (10.3 g/L) was seen in fermentation using fructose as the sole carbon source. The experimental data from batch fermentation and resuspended cell system was analysed in order to form the basis for a kinetic model of the process. An unstructured model based on logistic and Luedeking-Piret equations was found suitable to describe the growth, substrate consumption, and efficiency of kojic acid production by A. flavus in batch fermentation using sucrose. From this model, it was found that kojic acid production by A. flavus was not a growth-associated process. Fermentation without pH control (from an initial culture pH of 3.0) showed higher kojic acid production than single-phase pH-controlled fermentation (pH 2.5, 2.75, and 3.0).

Optimization of Fermentation Process for Acetic Acid Production (초산 생성을 위한 발효공정의 최적화)

  • Shin, Jin-A;Oh, Nam-Soon
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.217-221
    • /
    • 2010
  • Various conditions of acetic acid fermentation by Acetobacter aceti B20 strain were investigated and evaluated to optimize the fermentative production of acetic acid. The effects of the initial ethanol concentration on growth and acid productivity in a flask and fermentor were also studied. The growth of A. aceti B20 strain was inhibited as the concentration of ethanol increased. However, the highest total acidity and fermentation yield were 5.34% and 56.1%, respectively when the initial concentration of ethanol was 7% in the batch fermentation. Although the concentration of initial glucose influenced the growth rate of B20 strain, it did not influence the total acidity in the flask culture. When the agitation speed increased, the growth, total acidity and fermentation yield were all improved. In fed-batch fermentation, total acidities and fermentation yields were 7.14-8.76% and 39.1-53.0%, respectively, and their values mostly depended on the feeding methods.

Optimization of Fed-Batch Fermentation for Production of Poly-$\beta$-Hydroxybutyrate in Alcaligenes eutrophus

  • Lee, In-Young;Choi, Eun-Soo;Kim, Guk-Jin;Nam, Soo-Wan;Shin, Yong-Cheol;Chang, Ho-Nam;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.146-150
    • /
    • 1994
  • Production of poly-$\beta$-hydroxybutyrate (PHB) in fed-batch fermentation was studied. Utilization of carbon for PHB biosynthesis was investigated by using feeding solutions with different ratios of carbon to nitrogen (C/N). It was observed that at a high C/N ratio carbon source was more preferably utilized for PHB accumulation while its consumption for cellular metabolism appeared to be more favored at a low C/N value. A high cell concentration (184 g/l) was achieved when ammonium hydroxide solution was fed to control the pH, which was also utilized as the sole nitrogen source. For the mass production of PHB, two-stage fed-batch operations were carried out where PHB accumulation was observed to be stimulated by switching the ammonium feeding mode to the nitrogen limiting condition. A large amount of PHB (108 g/l) was obtained with cellular content of 80% within 50 hrs of operation.

  • PDF

The Effect of Dissolved Oxygen on Microbial Transglutaminase production by Streptoverticillium morbaraense (용존산소 농도 조절이 미생물유래 Transglutaminase 생산에 미치는 영향)

  • 유재수;전계택;정용섭
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.155-160
    • /
    • 2003
  • The effect of dissolved oxygen(DO) on microbial transglutaminase(mTG) production by Streptoverticillium morbaraense was studied in on-line computer controlled fermentation system. In order to control dissolved oxygen during fermentation, the agitation speed and aeration rate of 2.5 L fermenter ranged from 260 to 360 rpm and 0.3 to 3.9 L/min, respectively. The maximum microbial transglutaminase production was obtained at controlled 20% of dissolved oxygen among the various dissolved oxygen controlled batch cultures tested. The production of microbial transglutaminase at controlled 20% of dissolved oxygen was about 2.12 U/mL which was 1.1 times higher than that obtained in batch culture without control of dissolved oxygen. Also, the highest microbial transglutaminase production was obtained in fed-batch cultures in which dissolved oxygen was controlled at 20%, and it was improved almost 1.3 times in comparison with that without control of dissolved oxygen. Maximal dry cell weight and microbial transglutaminase production were 13.2 g/L and 2.6 U/mL, respectively. Finally, it was also found that fed-batch fermentation at controlled 20% of dissolved oxygen showed a good performance for the microbial transglutaminase production by on-line computer controlled fermentation system which may be generally applicable to other microbial cultures.

Production of Mannitol Using Leuconostoc mesenteroides NRRL B-1149

  • 김창영;이진하;김병훈;유선권;소은성;조갑수;Donal F. Day;김도만
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.4
    • /
    • pp.254-254
    • /
    • 2002
  • A process for the production of mannitol from fructose (5% to 25%) using Leuconosyoc mesenteroides NRRL B-1149 was investigated. Fermentations were carried out in bat도 of fed-batch fermentations without aeration at 28℃, pH 5.0. When 5% fructose was used in batch culture fermentation, the yield of mannitol was 78% of that expected theoretically. When the fructose concentration was increased to 10%, the yield dropped to 59.6% of the theoretical value. However, in the fed-batch culture, using 10% fructose, the yield was 81.9% of the theoretical value. In a 15% fructose fed-bat도 culture, with 5% fructose being added initially and the other 10% fructose being added as a continuous supply, the final yield was 83.7% of the theoretical yield. When 20% fructose was used in the same manner, the yield was 89.5% of theoretical yield.

Enhancement of Alcohol Fermentation Yield by Adding the Extract of Dried Rehmannia glutinosa Liboschitz (건지황 추출물을 이용한 알콜 발효 수율 증진)

  • Ahn, Sang-Wook;Kim, Min-Hoe;Chung, Woo-Taek;Hwang, Baek;Seong, Nak-Sul;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.4
    • /
    • pp.351-361
    • /
    • 2000
  • The juice extract of Rehmannia glutinosa Liboschitz was used to improve the productivity of ethanol in alcohol fermentation process using a 5 L fermentor under batch and fed-batch cultivations. For batch cultivation, both cell density and ethanol production were increased as the extract of R. glutinosa was increased, showing 11.8 (g/L) of maximum cell density and 0.092 (% /hr) of maximum alcohol productivity in adding 30% (v/v) of the extract. However, in adding more than 40% of the extract both cell growth and ethanol production were dropped. The cell growth was severely inhibited in 50% addition. It was found that fed-batch cultivation in adding 30% of the extract of R. glutinosa was an effective process than batch cultivation, yielding up to 30% cell growth and ethanol production. This ethanol productivity was also 30-40% higher than that obtained from a conventional alcohol fermentation. It can tell that dried R. glutinosa Liboschitz is to be used for both enhancing the yield of alcohol fermentation and utilizing biologically active substances possibly transported from R. glutinosa Liboschitz into fermented broth.

  • PDF