• Title/Summary/Keyword: batch distillation

Search Result 29, Processing Time 0.02 seconds

Application of Time-series Cross Validation in Hyperparameter Tuning of a Predictive Model for 2,3-BDO Distillation Process (시계열 교차검증을 적용한 2,3-BDO 분리공정 온도예측 모델의 초매개변수 최적화)

  • An, Nahyeon;Choi, Yeongryeol;Cho, Hyungtae;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.532-541
    • /
    • 2021
  • Recently, research on the application of artificial intelligence in the chemical process has been increasing rapidly. However, overfitting is a significant problem that prevents the model from being generalized well to predict unseen data on test data, as well as observed training data. Cross validation is one of the ways to solve the overfitting problem. In this study, the time-series cross validation method was applied to optimize the number of batch and epoch in the hyperparameters of the prediction model for the 2,3-BDO distillation process, and it compared with K-fold cross validation generally used. As a result, the RMSE of the model with time-series cross validation was lower by 9.06%, and the MAPE was higher by 0.61% than the model with K-fold cross validation. Also, the calculation time was 198.29 sec less than the K-fold cross validation method.

Acetone-Butanol-Ethanol (ABE) Production in Fermentation of Enzymatically Hydrolyzed Cassava Flour by Clostridium beijerinckii BA101 and Solvent Separation

  • Lepiz-Aguilar, Leonardo;Rodriguez-Rodriguez, Carlos E.;Arias, Maria Laura;Lutz, Giselle
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1092-1098
    • /
    • 2013
  • Cassava constitutes an abundant substrate in tropical regions. The production of butanol in ABE fermentation by Clostridium beijerinckii BA101 using cassava flour (CF) was scaled-up to bioreactor level (5 L). Optimized fermentation conditions were applied; that is, $40^{\circ}C$, 60 g/l CF, and enzymatic pretreatment of the substrate. The batch fermentation profile presented an acidogenic phase for the first 24 h and a solventogenic phase afterwards. An average of 37.01 g/l ABE was produced after 83 h, with a productivity of 0.446 g/l/h. Butanol production was 25.71 g/l with a productivity of 0.310 g/l/h, high or similar to analogous batch processes described for other substrates. Solvent separation by different combinations of fractioned and azeotropic distillation and liquid-liquid separation were assessed to evaluate energetic and economic costs in downstream processing. Results suggest that the use of cassava as a substrate in ABE fermentation could be a cost-effective way of producing butanol in tropical regions.

Development of a Web-Based Virtual Laboratory System for Chemical Processes Using an Object-Oriented Technology (객체지향 기술을 이용한 화학공정의 웹기반 가상실험 시스템 개발)

  • Lee, Kyung-Yong;Sin, Dong-Il;Lee, Euy-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.413-417
    • /
    • 2002
  • The Internet technology has been recognized not only as a tool far communication in the 21st century but also as an environment for enabling changes in the paradigm of teaching and learning. This paper describes a web-based system development for chemical engineering education. Simulation and visualization of dynamic systems in the environment of a standard web-browser is made possible by extending its capabilities. ActiveX control is used to simulate the system tool far online representation of Virtual Lab. System that is developed using visual basic. The courseware is classified into tutorial, exercises, and virtual experiments.

Production Technology of Titanium by Kroll Process (Kroll법에 의한 타이타늄의 제조기술)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.3-14
    • /
    • 2020
  • Titanium sponge is industrially produced by the Kroll process. In order to understand the importance of the emerging smelting and recycling process, it is necessary to review the conventional production process of titanium. Therefore this paper provides a general overview of the conventional titanium manufacturing system mainly by the Kroll process. The Kroll process can be divided into four sub-processes as follows: (1) Chlorination of raw TiO2 with coke, by the fluidized bed chlorination or molten salt chlorination (2) Magnesium reduction of TiCl4 and vacuum distillation of MgCl2 and Mg by reverse U-type or I-type with reduction-distillation integrated retorts (3) Electrolysis process of MgCl2 by monopolar cells or multipolar cells to electrolyze into chlorine gas and Mg. (4) Crushing and melting process in which sponge titanium is crushed and then melted in a vacuum arc furnace or an electron beam furnace Although the apparatus and procedures have improved over the past 80 years, the Kroll process is the costly and time-consuming batch operation for the reduction of TiCl4 and the separation of MgCl2.

Liquefaction Characteristics of Polyethylene-polystyrene Mixture by Pyrolysis at Low Temperature (Polyethylene-polystyrene 혼합물의 저온 열분해에 의한 액화특성)

  • Lee, Bong-Hee;Kim, Su-Ho;Choi, Hong-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.495-502
    • /
    • 2008
  • To investigate the synergy effect on the pyrolysis of mixture of polyethylene(PE) and polystyrene(PS), the pyrolysis of PE, PS and the mixture of PE-PS was carried out in a batch reactor at the atmospheric pressure and $450^{\circ}C$. The pyrolysis time was from 20 to 80 mins. The liquid products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the distillation temperatures based on the petroleum product quality standard of Korea Institute of Petroleum Quality. The analysis of the product oils by GC/MS showed that the new components produced by mixing were not detected. The synergy effect according to mixing of PE and PS did not also appear. The conversion and yield of mixtures were in proportion to the mixing ratio of sample.

Recovery of Paraffin Components from Pyrolysis Oil Fraction of Waste Plastic by Batch Cocurrent 4 Stages Equilibrium Extraction (회분 병류 4단 평형추출에 의한 폐플라스틱 열분해유 유분 중의 파라핀 성분의 회수)

  • Kang, Ho-Cheol;Shin, Sung Soon;Kim, Doo Han;Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.630-634
    • /
    • 2018
  • The recovery of paraffin components contained in the fraction as a part of improving the quality for the fraction of waste plastics pyrolysis oil (WPPO) was investigated by batch cocurrent 4 stages equilibrium extraction. The fraction at a distilling temperature of $120-350^{\circ}C$ recovered from WPPO by the simple distillation and a little water-added dimethylformamide (DMF) solution were used as a raw material and solvent, respectively. As the number of equilibrium extraction (n) and the carbon number of paraffin component increased, the concentration of paraffin component contained in the raffinate increased. The concentrations of $C_{12}$, $C_{14}$, $C16$ and $C_{18}$ paraffin components present in the raffinate recovered at n = 4 were about 1.2, 1.5, 1.6 and 1.8 times higher than those of using the raw materials, respectively. Recovery rates (residue rates present in raffinate) of paraffin components rapidly decreased with increasing n, and increased sharply with increasing the carbon number. Furthermore, it was possible to predict the recovery rates at n = 1 - 4 for all paraffin components ($C_7-C_{24}$) contained in the raw material. The raffinate recovered through this study is expected to be used as a renewable energy.

High-Purity Purification of Indole Contained in Coal Tar Fraction - Separation of Close Boiling Mixtures of Indole by Solute Crystallization - (콜타르 유분 중에 함유된 인돌의 고순도 정제 - 용액 결정화에 의한 인돌 유사 비점 혼합물의 분리 -)

  • Kim, Su Jin;Kang, Ho-Cheol;Jeong, Hwa Jin
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.238-241
    • /
    • 2010
  • The purification of indole from 54.3wt% indole fraction (temperature range of distillate: $250{\sim}255^{\circ}C$) recovered by extraction-distillation combination of coal tar fraction (temperature range of distillate: $240{\sim}265^{\circ}C$) was examined by solute crystallization. The feed consists of eight components such as quinoline, iso-quinoline, indole, quinaldine, 1-methylnaphthalene, 2-methylnaphthalene, biphenyl and phenyl ether. Hexane and an aqueous solution of methanol (50 : 50 vol%) were used as the crystallization solvent and the coolant, respectively. A batch stirred tank of glass material was used as a crystallization apparatus. By increasing the operation temperature and the volume ratio of solvent to feed at initial, the purity of indole increas ed, but yields of indole showed a decreasing tendency. Solute crystallization method using hexane as a solvent was excellent because the purity of 99.3 wt% indole was recovered at the yield of 50% without washing operation.

Production of Diacylglycerol-Oil from Lipase-Catalyzed Reaction Using Soybean Oil and Glyceryl Monooleate (대두유와 Glyceryl Monooleate의 효소적 반응을 이용한 Diacylglycerol 함유 유지의 생산)

  • Jeon, Mi-Sun;Lee, Cho-Rong;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.11
    • /
    • pp.1559-1563
    • /
    • 2009
  • Scaled-up production of oil containing diacylglycerol (DAG), so called diacylglycerol-oil, was produced by lipase-catalyzed reaction. Mixture of soybean oil and glyceryl monooleate with 1:2 molar ratio was esterified with Lipozyme RMIM in a batch-type reactor at 55$^{\circ}C$ and 300 rpm during 6 hr. After short-path distillation for removal of monoacylglycerol and free fatty acid as reaction by-products, diacylglycerol-oil mainly consisted of DAG (29 area%) and TAG (71 area%). The major compositional fatty acids in diacylglycerol-oil were oleic (44.36 wt%), and linoleic acids (37.36 wt%). Acid value and iodine value of diacylglycerol-oil were 0.13 and 112.6, respectively. Solid fat content (SFC) of diacylglycerol-oil was observed after differential scanning calorimetry (DSC) analysis in which three melting peaks at -25.0, 0.1, and 11.2$^{\circ}C$ were shown.

The Effects of Metathesis for Concentrating the Tocopherols from Soybean and Rice-bran Scum Oils (대두유 및 미강유의 찌꺼기유로부터 토코페롤의 농축을 위한 메타세시스 반응효과)

  • 안호근;문일식
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.449-454
    • /
    • 1995
  • The effects of metathesis for concentrating the tocopherols from soybean and rice-bran scum oils were studied by using the batch reactor under helium atmosphere. The contents of tocopherols in the scum oils decreased consticuously when heated under air atmosphere or when kept in hexane solution above 5 days even at room temperature. The sterols in the scum oils were removed by the mixed solvent method. Metathesis of the sterol-removed scum oils in hexane was performed over Re2O7/Al2O3 and WO3/Al2O3 catalysts, and the concentrate was obtained by distillation in vacuum at $190^{\circ}C$. The effect of metathesis was evaluated as relative ratio of ${\alpha}$-tocopherol in the concentrate to that in scum oil. The maximum ratio for both scum oils was obtained on 12.8%(w/w)$Re_2O_7/Al2O_3$ catalyst which formed effectively the active sites for metathesis by the reaction between the added tetramethyltin and $Re_2O_7$ on the surface of the catalyst. The optimum amount of the catalyst was 0.5g pre l0g scum oil, and the optimum reaction temperature was $25^{\circ}C$ for both scum oils. The metathesis was more effective in rice-bran scum oil than in soybean scum oil. These facts indicated that the tocopherols in the scum oils can be highly concentrated by applying metathesis.

  • PDF