Browse > Article

High-Purity Purification of Indole Contained in Coal Tar Fraction - Separation of Close Boiling Mixtures of Indole by Solute Crystallization -  

Kim, Su Jin (Department of Materials Science and Applied Chemistry, Chungwoon University)
Kang, Ho-Cheol (Green Chemistry Division, Korea Research Institutes of Chemical Technology)
Jeong, Hwa Jin (Department of Fashion & Textile Engineering, Chungwoon University)
Publication Information
Applied Chemistry for Engineering / v.21, no.2, 2010 , pp. 238-241 More about this Journal
Abstract
The purification of indole from 54.3wt% indole fraction (temperature range of distillate: $250{\sim}255^{\circ}C$) recovered by extraction-distillation combination of coal tar fraction (temperature range of distillate: $240{\sim}265^{\circ}C$) was examined by solute crystallization. The feed consists of eight components such as quinoline, iso-quinoline, indole, quinaldine, 1-methylnaphthalene, 2-methylnaphthalene, biphenyl and phenyl ether. Hexane and an aqueous solution of methanol (50 : 50 vol%) were used as the crystallization solvent and the coolant, respectively. A batch stirred tank of glass material was used as a crystallization apparatus. By increasing the operation temperature and the volume ratio of solvent to feed at initial, the purity of indole increas ed, but yields of indole showed a decreasing tendency. Solute crystallization method using hexane as a solvent was excellent because the purity of 99.3 wt% indole was recovered at the yield of 50% without washing operation.
Keywords
coal tar; indole; high-purity purification; solute crystallization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Y. Q. Fei, K. Sakanishi, and Y. N. Sun, Fuel, 69, 261 (1990)   DOI   ScienceOn
2 S. J. Kim, and Y. J. Chun, Sep. Sci. Techno., 40, 2095 (2005)   DOI   ScienceOn
3 Y. Yamamoto, Y. Sato, T. Ebina, C. Yokoyama, S. Takahasi, Y. Mito, H. Tanabe, N. Nishiguchi, and K. Nagaoka, Fuel, 70, 565 (1991)   DOI   ScienceOn
4 S. J. Kim and H. J. Jeong, J. Korean Ind. Eng. Chem., 19, 105 (2008)
5 I. Uemasu and T. Nakayama, J. Inclus. Phenom. Molec. Recogn. Chem., 7, 327 (1989)   DOI
6 K. Ukegawa, A. Matsumura, Y. Kodera, T. Kondo, T. Nakayama, H. Tanabe, S. Yoshida, and Y. Mito, J. Jap. Petro. Inst., 33, 250 (1990)   DOI
7 S. J. Kim, Y. J. Chun, and H. J. Jeong, J. Korean Ind. Eng. Chem., 18, 168 (2007)
8 Y. Kodera, K. Ukegawa, Y. Mito, M. Komoto, E. Ishikawa, and T. Nagayama, Fuel, 70, 765 (1991)   DOI   ScienceOn
9 I. Uemasu, J. Jap. Petro. Inst., 34, 371 (1991)   DOI
10 A. Baeyer and A. Emmerling, Chemische Berichte., 2, 679 (1869)
11 R. Egashira and C. Salim, J. Jap. Petro. Inst., 44, 178 (2001)   DOI   ScienceOn
12 佐藤公降, 化學經濟, 12, 28 (1987)
13 R. Egashira and M. Nagai, J. Jap. Petro. Inst., 43, 339 (2000)   DOI   ScienceOn
14 R. Fernando, De S$\acute{a}$ Alves, A. Carlos, M. Fraga, and J. Eliezer Barreiro, Mini Rev. Med, Chem., 9, 782 (2009)   DOI   ScienceOn
15 I. Mochida, Y. Q. Fei, and K. Sakanishi, Chem. Lett., 515 (1990)