• Title/Summary/Keyword: batch culture

Search Result 722, Processing Time 0.031 seconds

Production of Lignin-Degrading Enzymes by White Rot Fungi Immobilized in a Rotating Bioreactor (회전생물반응기에 고정화된 백색부후균에 의한 리그닌 분해효소의 생산)

  • 조무환;류원률
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.14-19
    • /
    • 2002
  • The objective of this study is to investigate optimum condition for lignin peroxidase production by white rot fungi Phanerochaete chysosporium IFO 31249 immobilized in a rotating bioreactor. The maximum lignin peroxidase activity of batch culture in rotating bioreactor was 300 U/L. The optimum rotating speed and packing ratio of support for lignin peroxidase production in a rotating bioreactor were 1 rpm and 20%, respectively. The optimum concentration of $MnSO_4$$\cdot$$H_2O$ for manganese-dependent peroxidase production in a rotating bioreactor was 50 ppm. The sufficient supply of oxygen was the most important factor to achieve maximum lignin peroxidase production. It was possible to produce lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) for at least 3 times successive repeated-batch cultures, respectively.

1,2-Propanediol Production by Using Saccharomyces cerevisiae M3G3 (Saccharomyces cerevisiae M3G3를 이용한 1,2-Propanediol의 생산 최적화)

  • Koo, Ja-Ryong;DaSilva, Nancy A.;Yun, Hyun-Shik
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.439-442
    • /
    • 2011
  • 1,2-propanediol (1,2-PD) is a commodity chemical that is currently produced from petrochemical derivatives. Saccharomyces cerevisiae is well characterized and a successful industrial microorganism to enable the improvement of the 1,2-propanediol production by metabolic engineering. A recombinant S. cerevisiae M3G3 was used to produce 1,2-propanediol. S. cerevisiae M3G3 is the diploid strain that contains 3 copies of mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase). S. cerevisiae M3G3 was cultivated at various culture conditions by changing culture temperature, glucose concentration, and inducer concentration. Also the effect of induction time was studied to optimize the production of 1,2-propanediol. Batch and fed-batch cultivation of S. cerevisiae M3G3 was performed by using a 5 L jar fermenter. The highest concentration of 1,2-propanediol in batch cultivation was 0.86 g/L and it was further improved to 1.33 g/L in fed-batch cultivation.

A Simulation Study of Two-stage Fed-batch Culture for Optimization and Control of PHB Production (PHB 생산의 최적화 및 제어를 위한 이단유가식 배양의 전산모사)

  • 이재호;이용우;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.668-676
    • /
    • 1992
  • For the purpose of optimizing poly-l3-hydroxybutyrate (PHB) production from Alcaligenes eutrophus, two-stage fed-batch culture was adopted. In this system, specifk growth rate was maximized during the first stage whereas specific production rate was maximized during the second stage. The optimal concentrations of glucose and ammonium chloride were 16.6 and 0.54 g/I in the growth stage and 20.0 and 0.07 g/l in the production stage, respectively. Proportional feedback control considering time lag was suggested for PHB production process and a simulator was developed for real-time control purpose.

  • PDF

Production of Poly-$\beta$-hydroxybutyrate and Poly-$\beta$-(hydroxybutyrate-co-hydroxyvalerate) by Fed-batch Culture of Alcaligenes eutrophus (Alcaligenes eutrophus의 유가식 배양에 의한 Poly-$\beta$-hydroxybutyrate 및 Poly-$\beta$-(hydroxybutyrate-co-hydroxyvalerate)의 생산)

  • Choi, Eun-Soo;Lee, In-Young;Kang, Choong-Kyung;Hong, Seung-Suh;Lee, Hyun-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.5
    • /
    • pp.588-592
    • /
    • 1995
  • Fed-batch fermentation was used to produce the high concentrations of poly-$\beta $-hydroxybutyrate (PHB) and poly-$\beta $-(hydroxybutyrate-co-hydroxyvalerate) (PHB/V). Specific growth rate ($\mu $), yield of cell from glucose (Y$_{x/s}$) were calculated from the two samples in 3 to 5 hours of interval and they were reflected on the determination of glucose feeding rate to maintain the glucose concentration at around 10 g/l in the culture broth. PHB was accumulated after the nitrogen became limited at 60 g/l of dry cell weight by changing ammonia water to 4N-NaOH solution. As results, the final dry cell weight (DCW) of 170 g/l, PHB of 115 g/l were obtained in 50 hours and the overall productivity was 2.4 g/l$\cdot $h. After PHB accumulation, cosubstrate of glucose and propionic acid (PA) was fed to accumulate PHB/V. But, PA feeding rate was decreased from 3 g/l$\cdot $h to 1 g/l$\cdot $h to prevent PA from accumulating to high level in the broth, which is very inhibitory to the cells. As results, DCW, PHB and PHV were 147.5 g/l, 90 g/l and 8 mole % of hydroxyvalerate, respectively.

  • PDF

Phytoremediation of 2,4,6-trinitrotoluene by Abutilion avicennae (어저귀에 의한 2,4,6-trinitrotoluene의 식물상 복원공법)

  • 배범한;김선영;이인숙;장윤영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.38-41
    • /
    • 2001
  • It has been reported that some plants have the potential to metabolize the 2,4,6-trintroluene (TNT) in contaminated soils, sediments and natural water. In this study, the effects of TNT on germination and early seedling development of Abutilion avicennae was characterized in a germination test. Concentration up to 80 mg/L TNT did not affect germination but root and shoot growth, and fresh biomass decreased as TNT concentration increased. A series of axenic hydroponical batch culture of Abutilion avicennae at various initial TNT concentration was used to determine its transformation kinetics, to identify products formed, and to evaluate phytotoxic effects on the TNT transformation process. At higher initial TNT concentrations, TNT removal rate constant decreased, however, total amount of TNT removed was increased in the culture media. Reductive transformation products of TNT were not detected in the plant culture media but higher concentrations of reduced metabolites were detected in the root and stem extracts of plant material at the 7 days of batch incubation. From these results we concluded that Abutilion avicennae has an intrinsic capacity for taking up and transforming TNT.

  • PDF

Adverse Effect of the Methanotroph Methylocystis sp. M6 on the Non-Methylotroph Microbacterium sp. NM2

  • Jeong, So-Yeon;Cho, Kyung-Suk;Kim, Tae Gwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1706-1715
    • /
    • 2018
  • Several non-methylotrophic bacteria have been reported to improve the growth and activity of methanotrophs; however, their interactions remain to be elucidated. We investigated the interaction between Methylocystis sp. M6 and Microbacterium sp. NM2. A batch co-culture experiment showed that NM2 markedly increased the biomass and methane removal of M6. qPCR analysis revealed that NM2 enhanced both the growth and methane-monooxygenase gene expression of M6. A fed-batch experiment showed that co-culture was more efficient in removing methane than M6 alone (28.4 vs. $18.8{\mu}mol{\cdot}l^{-1}{\cdot}d^{-1}$), although the biomass levels were similar. A starvation experiment for 21 days showed that M6 population remained stable while NM2 population decreased by 66% in co-culture, but the results were opposite in pure cultures, indicating that M6 may cross-feed growth substrates from NM2. These results indicate that M6 apparently had no negative effect on NM2 when M6 actively proliferated with methane. Interestingly, a batch experiment involving a dialysis membrane indicates that physical proximity between NM2 and M6 is required for such biomass and methane removal enhancement. Collectively, the observed interaction is beneficial to the methanotroph but adversely affects the non-methylotroph; moreover, it requires physical proximity, suggesting a tight association between methanotrophs and non-methylotrophs in natural environments.

Morphological Changes by Submerged Culture Conditions for the Mycelial Optimal Growth of Cordyceps sinensis and Immunological Properties of Hot Water Extract of Mycelium (동충하초 균사체 최적 성장을 위한 심부배양 조건에 따른 형태학적 변화 및 균사체 열수 추출물의 면역학적 특성)

  • Suh, Hyung-Joo;Choi, Jang-Won
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.47-54
    • /
    • 2010
  • The mycelial dispersed growth of Cordyceps sinensis was optimized in submerged batch culture at initial pH of 5.0, 150 rpm, and $25^{\circ}C$. The morphological data showed much more dispersed growth of C. sinenesis at initial pH of 5.0. Also, projected area, main hyphal length and number of tips for the mycelial growth of initial pH 5.0 were higher than those of other initial pHs. The industrial medium for mycelial production of C. sinensis was determined to be molasses of 100 g and crushed brewery yeast of 10 g per liter as carbon and nitrogen sources, respectively. With these culture conditions, the maximum production of mycelia was approximately 30.0 g per liter by batch culture in 5-liter jar fermenter with no controlled pH. This result suggests that large-scale mycelia production of C. sinensis may be possible in submerged batch culture. The hot water extract of mycelia from C. sinensis was mainly composed of 83.0% carbohydrate, 11.8% protein, 1.9% lipid, and 2.4% ash and there were present glucose, mannose, galactose, and arabinose as molar ratio of 8.79 : 2.59 : 1.34 : 1.0 in the carbohydrate, respectively. In the experiment using spleen cell and macrophage, the extract showed potent mitogenic and immuno-stimulating activities and among various components, an important factor that contribute to the immunological activities was turned out to be carbohydrate moiety.

Glucoamylase Production in Batch and Fed-Batch Solid State Fermentation: Effect of Maltose or Starch Addition

  • Bertolin, Telma Elita;Jorge Alberto Vieira Costa;Gean Delise Leal Pasquali
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.13-16
    • /
    • 2001
  • Maltose and soluble starch were used as secondary sources of carbon for glucoamylase production by Aspergillus awamori in solid state fermentation. During batch cultivation, maltose above 2.5%(w/w) repressed glucoamylase production, but, by adding either 2.5% (w/w) maltose or 1.25% (w/w) soluble starch to fed-batch cultivations, glucoamylase activity was increased by 15% and 170% over standard medium, respectively. The data showed that maltose is a weak inducer of glucoamylase production in solid stat fermentation.

  • PDF

Alcohol Production from Whey in Batch and Continuous Culture of Kluyveromyces fragilis.

  • Heo, Tae-Ryeon;Kim, Jong-Soo;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.333-337
    • /
    • 1994
  • In order to develop the whey beverage, we examined the optimum conditions for alcohol fermentation by Kluyveromyces tragilis ATCC 46537. The optimum conditions for alcohol production by K. fragilis ATCC 46537 were as follows; pH 4.5, $30^{\cir}C$, with a supplement of 50 g/l of lactose. To develop a continuous production of alcohol from whey, we compared batch fermentation with continuous iermentation in conjunction with UF system. Batch fermentation produced 11.0 g/l of alcohol, whereas pseudocontinuous and continuous fermentation with UF system produced 8.5 g/l of alcohol. To increase the alcohol production, we added 50 g/l of lactose to both fermentations. Batch fermentation with lactose supplement produced 15.7 g/l of alcohol and continuous fermentation with lactose supplement in conjunction with UF system produced 15.0 g/l of alcohol. These results clearly demonstrate that the UF system can be used to increase the alcohol production from whey, supplemented with exogenous lactose.

  • PDF

Xylitol의 생산성 향상을 위한 Two-stage Fed-batch 배양조건의 최적화

  • Jo, Yeong-Il;Seo, Jin-Ho;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.356-359
    • /
    • 2000
  • A two-stage fed-batch fermentation was carried out to increase xylitol productivity by Candida tropicalis. The first stage for cell growth was performed in the pH-stat and continuous fed-batch modes. The higher cell growth and lower ethanol production obtained in the fed-batch mode where the growth medium was fed when pH of culture broth increased over 5.7. And also the effect of oxygen transfer on xylitol production was investigated by changing agitation speed under 0.5 vvm of aeration. The maximum xylitol productivity and yield were obtained at 500 rpm of agitation.

  • PDF