• Title/Summary/Keyword: batch adsorption experiment

Search Result 95, Processing Time 0.024 seconds

Study on Adsorption Characteristics of Perfluorinated Compounds(PFCs) with Structural Properties (과불화화합물 구조적 속성에 따른 흡착 특성 연구)

  • Choi, HyoJung;Kim, Deok Hyun;Yoon, JongHyun;Kwon, JongBeom;Kim, Moonsu;Kim, Hyun-Koo;Shin, Sun-Kyoung;Park, Sunhwa
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.20-28
    • /
    • 2021
  • Perfluorinated compounds(PFCs), an emerging environmental pollutant, are environmentally persistent and bioaccumulative organic compounds that possess a toxic impact on human health and ecosystems. PFCs are distributed widely in environment media including groundwater, surface water, soil and sediment. PFCs in contaminated solid can potentially leach into groundwater. Therefore, understanding PFCs partitioning between the aqueous phase and solid phase is important for the determination of their fate and transport in the environment. In this study, the sorption equilibrium batch and kinetic experiment of PFCs were carried out to estimated the sorption coefficient(Kd) and the fraction between aqueous-solid phase partition, respectively. Sorption branches of the PFDA(Perfluoro-n-decanoic acid), PFNA(Perfluoro-n-nonanoic acid), PFOA(Perfluoro-n-octanoic acid), PFOS(Perfluoro-1-octane sulfonic acid) and PFHxS(Perfluoro-1-hexane sulfonic acid) isotherms were nearly linear, and the estimated Kd was as follow: PFDA(1.50) > PFOS(1.49) > PFNA(0.81) > PFHxS(0.45) > PFOA(0.39). The sorption kinetics of PFDA, PFNA, PFOA, PFOS and PFHxS onto soil were described by a biexponential adsorption model, suggesting that a fast transport into the surface layer of soil, followed by two-step diffusion transport into the internal water and/or organic matter of soil. Shorter times(<20hr) were required to achieve equilibrium and fraction for adsorption on solid(F1, F2) increased with perfluorinated carbon chain length and sulfonate compounds in this study. Overall, our results suggested that not only the perfluorocarbon chain length, but also the terminal functional groups are important contributors to electrostatic and hydrophobic interactions between PFCs and soils, and organic matter in soils significantly affects adsorption maximum capacity than kinetic rate.

Adsorption Characteristics of Methyl Orange on Ginkgo Shell-Based Activated Carbon (은행 껍질 기반 활성탄의 메틸오렌지 흡착 특성)

  • Lee, Jeong Moon;Lee, Eun Ji;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.636-645
    • /
    • 2022
  • In this study, we investigated the adsorption characteristics of methyl orange (MO), an anionic dye, on ginkgo shell-based activated carbon (AC). For this purpose, ACs (GS-1, GS-2, and GS-4) with different textural properties were prepared using ginkgo shells and potassium hydroxide (KOH), a representative chemical activating agent. The correlation between the textural characteristics of AC prepared and the mixing ratio of KOH was investigated using nitrogen adsorption/desorption isotherms. The MO adsorption equilibrium experiment on the prepared ACs was conducted under different pH (pH 3~11) and temperature (298~318 K) conditions, and the results were investigated by Langmuir, Freundlich, Sips and temperature-dependent Sips equations. The feasibility of the MO adsorption treatment process of the prepared AC was also investigated using the dimensionless Langmuir separation factor. The heterogeneous adsorption properties of MO for the prepared AC examined using the adsorption energy distribution function (AED) were closely related to the system temperature and textural characteristics of AC. The kinetic results of the batch adsorption performed at different temperatures can be satisfactorily explained by the homogeneous surface diffusion model (HSDM), which takes into account the external mass transfer, intraparticle diffusion, and active site adsorption. The relationship between the activation energy value obtained by the Arrhenius plot and the adsorption energy distribution function value was also investigated. In addition, the adsorption process mechanism of MO on the prepared AC was evaluated using Biot number.

The Effect of Fumed Silica on Nitrate Reduction by Zero-valent Iron (흄드 실리카가 영가철에 의한 질산성질소 환원에 미치는 영향)

  • Cho, Dong-Wan;Jeon, Byong-Hun;Kim, Yong-Je;Song, Ho-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.599-608
    • /
    • 2010
  • The effect of silica(fumed) on nitrate reduction by zero-valent iron(ZVI) was studied using batch experiment. The reduction of nitrate was tested in three different aqueous media including de-ionized water, artificial groundwater and real groundwater contaminated by nitrate. Kinetics of nitrate reduction in groundwater were faster than those in de-ionized water, and first-order rate constant($k_{obs}$) of ZVI/silica(fumed) process was about 2.5 time greater than that of ZVI process in groundwater. Amendment of Silica(fumed) also decreased ammonium presumably through adsorption on silica surface. The pHs in all processes increased due to oxidation of ZVI, but the increase was lower in groundwater due to buffering capacity of groundwater. The result also showed amount of reduced nitrate increased as initial nitrate concentration increased in groundwater. Separate adsorption isotherm experiments indicated that fumed silica itself had some degree of adsorption capacity for ammonium. The overall results indicated that silica(fumed) might be a promising material for enhancing nitrate reduction by ZVI.

A Study of Fluoride Adsorption in Aqueous Solution Using Iron Sludge based Adsorbent at Mine Drainage Treatment Facility (광산배수 정화시설 철 슬러지 기반 흡착제를 활용한 수용액상 불소 흡착에 관한 연구)

  • Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.709-716
    • /
    • 2021
  • In this study, an adsorbent prepared by natural drying of iron hydroxide-based sludge collected from settling basin at a mine drainage treatment facility located in Gangneung, Gangwon-do was used to remove fluoride in an artificial fluoride solution and mine drainage, and the adsorption characteristics of the adsorbent were investigated. As a result of analyzing the chemical composition, mineralogical properties, and specific surface area of the adsorbent used in the experiment, iron oxide (Fe2O3) occupies 79.2 wt.% as the main constituent, and a peak related to calcite (CaCO3) in the crystal structure analysis was analyzed. It was also identified that an irregular surface and a specific surface area of 216.78 m2·g-1. In the indoor batch-type experiment, the effect of changes in reaction time, pH, initial fluoride concentration and temperature on the change in adsorption amount was analyzed. The adsorption of fluoride showed an adsorption amount of 3.85 mg·g-1 16 hours after the start of the reaction, and the increase rate of the adsorption amount gradually decreased. Also, as the pH increased, the amount of fluoride adsorption decreased, and in particular, the amount of fluoride adsorption decreased rapidly around pH 5.5, the point of zero charge at which the surface charge of the adsorbent changes. Meanwhile, the results of the isotherm adsorption experiment were applied to the Langmuir and Freundlich isotherm adsorption models to infer the fluoride adsorption mechanism of the used adsorbent. To understand the thermodynamic properties of the adsorbent using the Van't Hoff equation, thermodynamic constants 𝚫H° and 𝚫G° were calculated using the adsorption amount information obtained by increasing the temperature from 25℃ to 65℃ to determine the adsorption characteristics of the adsorbent. Finally, the adsorbent was applied to the mine drainage having a fluoride concentration of about 12.8 mg·L-1, and the fluoride removal rate was about 50%.

Study on Characteristics and Preparation of Binderless ZSM-5 Granules for Adsorption of Xylene Isomers (Binderless ZSM-5 성형체의 합성 및 자일렌 이성체의 흡착 특성에 관한 연구)

  • Yun, Hyo-Sang;Hong, Ji-Sook;Suh, Jeong-Kwon;Shin, Chae-Ho
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.417-423
    • /
    • 2010
  • In this study, an effective method to prepare granular binderless ZSM-5 which is as efficient p-xylene separatory adsorbent was explored. Colloidal silica sol 30 wt% solution as an inorganic binder and microcrystalline cellulose as an organic additive were added to ZSM-5 powder ($SiO_2/Al_2O_3$ = 50). Adsorbent with enough strength (0.721 kgf), high crystallinity (94.6%) and high BET specific surface area ($379.2m^2$/g) was obtained by calcination, binderless treatment, ${NH_4}^+$ ion exchange, and activation after spherical granulation process. A batch type adsorption experiment was proceeded with solutions comprising 3 xylene isomers by 1 : 1 : 1 weight ratio to evaluate adsorption characteristics of prepared absorbent. As a result, the obtained binderless ZSM-5 granule showed a higher selective adsorption performance for para-xylene than that of commercial adsorbent.

The Removal of Silver in the Fixer Wastewater of X-ray Film Using Manganese Dioxide (이산화망간을 이용한 x-ray 필름 정착폐액중의 은 제거)

  • 박정호;오성훈;전용보;임찬섭;박승조
    • Resources Recycling
    • /
    • v.6 no.4
    • /
    • pp.11-16
    • /
    • 1997
  • The wastewater resulted from the process of developing and fuing for x-ray film manufachlring contains a lot of silvercomponent. The average concentation of silver-component is about 1,500 mgA. The wastewater contained silver-component is toxic when it is discharged to the natural ecosystem. So that we must to do pretreatment of wastewater prior to discharge. There are electrolysis. chemical precipitation, and metallic replacement as conventional lreabent proccss of fixer wastewater of x-ray film. Adsorption of silver-component in x-ray fkcr wastewater was carricd out this study. 'Ille manganese dioxide (MDO) reagent and the recovered manganese dioxide (RMDO) from the waste dry-cell were used for adsarbents. Adsorption of silvercomponent was wrried out at the batch and continuous type experimental equipment. The adsorption experiment results were obtained bom silver-component have some diifcrences according to adsorhents. The adsorption results of manganese dioxide reagent (MDO) were better ihan those of waste dry-ccU (RMDO), but the manganese dloxide recovered fmm waste dry-cell (RMDO) will be able la recognized as good adsorbent too.

  • PDF

Study on Adsorption Kinetic Characteristics of Propineb Pesticide on Activated Carbon (활성탄에 대한 프로피네브 농약의 흡착동력학적 특성 연구)

  • Lee, Jong-Jib;Cho, Jung-Ho;Kim, Heung-Tae
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.346-352
    • /
    • 2011
  • The adsorption characteristics of propineb pesticide onto activated carbon has been investigated for the adsorption in aqueous solution with respect to initial concentration, contact time and temperature in batch experiment. The Langmuir and Freundlich adsorption models were applied to described the equilibrium isotherms and isotherm constants were also determined. The Freundlich model agrees with experimental data well. slope of isotherm line indicate that activated carbon could be employed as effective treatment for removal of propineb. The pseudo first order, pseudo second order kinetic models were use to describe the kinetic data and rate constants were evaluated. The adsorption process followed a pseudo second order model, and the adsorption rate constant($k_2$) decreased with increasing initial concentration of propineb. The activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The estimated values for change of free energy were -7.28, -8.27 and -11.66 kJ/mol over activated carbon at 298, 308 and 318 K, respectively. The results indicated toward a spontaneous process. The positive value for change of enthalpy, 54.46 kJ/mol, found that the adsorption of propineb on activated carbon is an endothermic process.

A Proposition for the Removal of Algae and Phosphorus from River Water Using Multi-Purpose filtration pond (다목적 여과저류지를 이용한 하천수의 조류와 인 제거방안 제안)

  • Choi, Hong-Gyu;Jeong, Il-Hwa;Bae, Gha-Ram;Park, Jae-Young;Lee, Jong-Jin;Kim, Yong-Woon;Jung, Kwan-Sue;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.525-531
    • /
    • 2013
  • In an effort to find a solution to the eutrophication of major Korean rivers, a method to utilize multi-purpose filtration pond was investigated. As literature showed that oyster shell is known to be the most adequate for the removal of dissolved phosphorus in Korean rivers, batch and column experiments were performed using oyster shell as an adsorbent in this study. The results of the batch experiment showed that the removal of dissolved phosphorus from river water through adsorption as a way of preventing algal growth was not practical. The results obtained from the column experiment, however, suggested that oyster shell may be utilized as an adsorbent under limited conditions. Based on the results of the experiments a methodology was proposed to remove algae from river water through the use of multi-purpose filtration pond. This method involves mechanically removing the accumulated algae cake from the surface of the artificial stream in the pond towards the condensing part located at the lower reach of the stream, where particles gather before the final removal. In addition, employment of oyster shell as an adsorbent in the condensing part allows prevention of phosphorus released from the dead algae re-entering the river water.

Removal of Phosphate by Using Wasted Sludge of Seafood Processing Factory (수산물 가공 폐슬러지를 이용한 인산염인 제거)

  • Choi, Bong-Jong;Lee, Seung-Mok;Kim, Keun-Han
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.23-28
    • /
    • 1999
  • Phosphate removal through adsorbent, such as activated alumina, powdered aluminum oxide, flyash, blasted furnace slag and other materials, is commonly and widely practiced. The purpose of this study was to improve the removal efficiency of phosphorus in waste sludge earned at seafood processing factories. To investigate the utility and the feasibility of this sludge disposal process, experiment was carried out with a batch process. As a result, phosphate removal appears to increase with increasing adsorbent does, but shows no changes at an adsorbent does over 5g/l. With increasing ratios of initial phosphate concentration to adsorbent does, the amount of removed phosphate is increased while phosphate removal(%) is decreased. Wasted sludge, treated with zinc chloride chemically, represented a better efficiency than the untreated activated sludge and zinc chloride itself, when they reacted with phosphate solution.

  • PDF

A Study of Protein Ion Exchange Chromatography based on Plate Theory (단이론에 따른 단백질 이온교환 크로마토그라피의 연구)

  • 김인호;김진태
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.485-491
    • /
    • 1995
  • Protein ion exchange chromatography was studied experimentally in order to prove the theoretical prediction from the linear model of Yamamoto, S. et al (1). Adsorption isotherms were measured as a function of ionic strength in a batch experiment. The relationship between the characteristics of chromatogram and the operating conditions of ionic strength, flow rate, length of column, concentration and amount of protein sample were studied. At the higher ionic strength, the lower flow rate and the longer column conditions, the higher number of plate was obtained. Satisfactory agreement was observed between the experimental and the calculated chromatograms except for the case of high protein concentration.

  • PDF