• Title/Summary/Keyword: batch 흡착 실험

Search Result 210, Processing Time 0.023 seconds

Adsorption of Decomposed-Granite Soils Varing with Weathering on Heavy Metals (화강풍화토의 풍화도에 따른 중금속 흡착특성)

  • Kwon, Minseok;Lee, Myoungeun;Mok, Youngjin;Chung, Jaewoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.59-64
    • /
    • 2013
  • Effects of weathering intensity on the adsorption of heavy metals such as lead(Pb) and copper(Cu) onto decomposed granite soils were investigated by a series of batch tests. The chemical components such as $SiO_2$, $K_2O$ and $Na_2O$ having relatively high solubility were reduced and the oxidized $Fe_2O_3$ content was increased with the increase of weathering intensity. Weathering of granite soils increased the ignition loss and specific surface area, while it decreased the permeability. The lead and copper adsorptions onto the decomposed granites were enhanced with the increase of weathering intensity, mainly due to the increase of specific surface area and clayed contents. Adsorption of lead and copper onto the weathered granites could be more adequately described by the pseudo-second-order kinetic model than the pseudo-first-order model.

Adsorptive Removal of 2-Methylisoborneol and Geosmin in Raw Water Using Activated Carbon and Zeolite (활성탄과 제올라이트를 이용한 상수원수 중 이취미물질(2-MIB, Geosmin)의 흡착제거)

  • Choi, Jeong-Hwan;Lee, Hong-Jae;Kim, Won-Ju;Park, Hyun-Geoun;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.244-251
    • /
    • 2001
  • This study was performed to investigate the recovery efficacy of 2-methylisobomeol (2-MIB) and Geosmin, odor contaminants produced by algae, by pretreatment techniques, and also to investigate both adsorption characteristics and removal efficiency to get some information for the effective removal of 2-MIB and Geosmin by batch experiments. In pretreatment experiments, the best recovery efficiency of both odorants at 0.2 and $2\;{\mu}g/L$ in raw water was 30 mL of sampling size, 9 g NaCl for salting out headspace of sampling phase and 40 minutes of adsorption. At the best condition, the recovery efficiency of 2-MIB was 85% at $0.2\;{\mu}g/L$ and 95% at $2\;{\mu}g/L$, whereas the efficiency of Geosmin was lower than that of 2-MIB : 61% at $0.2\;{\mu}g/L$ and 81% at $2\;{\mu}g/L$. In batch experiments, the removal efficiency of the Geosmin and 2-MIB by adsorbents using distilled water were increased in comparison with raw water, the efficiency in raw water was little different by their concentrations. When these results were applied to the Freundrich adsorption isotherm, the K value of 2-MIB for zeolite, coal activated carbon, and coconut activated carbon was 0.671, 1.811, and 1.340, respectively, and the value of Geosmin was 0.6125, 1.771, and 1.5191, respectively. Thus the adsorption efficiency of 2-MIB and Geosmin was in the order of zeolite, coconut activated carbon, coal activated carbon.

  • PDF

Biosorption Characteristics of Pb and Cu by Ca-alginate Immobilized Algae Spirulina platensis (Ca-alginate에 고정한 Spirulina platensis의 납과 구리 흡착 특성)

  • Shin, Taek-Soo;Woo, Byoung-Sung;Lim, Byung-Seo;Kim, Kwang-Yul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.446-452
    • /
    • 2008
  • This study was conducted to research the biosorption characteristics using algae, Spirulina platensis, for the removal of Pb and Cu ions in wastewater. Both of free algal cell and immobilized algae by Ca-alginate were used as bioadsorbent, and experiment was proceed in batch reactor for Pb and Cu ions removal, respectively. In the biosorption of Pb and Cu ions by free Spirulina platensis cell, the adsorption equilibrium reached within 20 minute. The higher adsorbed amount of Pb and Cu was shown as increasing of initial concentration of Pb and Cu, and pH of solution, respectively, and the optimum pH was 4.5$\sim$5.0. Under the conditions of initial concentration of Pb or Cu are 200 mg/L, the maximum amounts of Pb and Cu adsorbed to the unit weight of Spirulina platensis were 86.43 and 57.02 mg/g, respectively, and these values were 1.94 and 1.48 times higher than those of activated carbon under same conditions, respectively. The biosorption kinetics of Pb and Cu ions by free Spirulina platensis cell fitted very well to the Freundlich and Langmuir isotherm. The maximum amount of Pb or Cu adsorbed to the unit mass of adsorbent by the Langmuir isotherm($q_{max}$) represented as 95.24 and 62.50 mg/g, respectively. The FT-IR results of free Spirulina platensis biomass showed that biomass has different functional groups and these functional groups are able to react with metal ions in aqueous solution. In the biosorption of Pb and Cu ions by Ca-alginate immobilized algae Spirulina platensis, the adsorption equilibrium reached within 40 min. and observed a little diffusion limitation differed from the free algal cell adsorption.

Nitrate and Phosphate Adsorption Properties by Aminated Vinylbenzyl Chloride Grafted Polypropylene Fiber (아민형 PP-g-VBC의 NO3-N과 PO4-P 흡착특성)

  • Lee, Yong-Jae;Song, Jee-June;Na, Choon-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.543-550
    • /
    • 2016
  • Amine-type PP-g-VBC-EDA adsorbent, which possesses anionic exchangeable function, was prepared through photoinduced graft polymerization of vinylbenzyl chloride (VBC) onto polypropylene non-woven fabric and subsequent amination reaction using ethylenediamine (EDA). Adsorption characteristics of anionic nutrients on the PP-g-VBC-EDA adsorbent have been studied by batch adsorption experiments. The equilibrium data well fitted the Langmuir isotherm model, and the maximum monolayer sorption capacity was found to be 59.9 mg/g for $NO_3-N$ and 111.4 mg/g for $PO_4-P$. The adsorption energies were higher than 8 kJ/mol indicating anion-exchange process as the primary adsorption mechanism. The pseudo-second order kinetic model described well the kinetic data and resulted in the activation energy of 9.8-36.7 kJ/mol suggesting that the overall rates of $NO_3-N$ and $PO_4-P$ adsorption are controlled by the chemical process. Thermodynamic parameters such as ${\Delta}G^o$, ${\Delta}H^o$ and ${\Delta}S^o$ indicated that the adsorption nature of PP-g-VBC-EDA for anionic nutrients is spontaneous and exothermic. The PP-g-VBC-EDA could be regenerated by washing with 0.1 N HCl.

Adsorption Characteristics of Brilliant Green by Coconut Based Activated Carbon : Equilibrium, Kinetic and Thermodynamic Parameter Studies (야자계 입상 활성탄에 의한 brilliant green의 흡착 특성 : 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.198-205
    • /
    • 2019
  • The adsorption equilibrium, kinetic, and thermodynamic parameters of brilliant green adsorbed by coconut based granular activated carbon were determined from various initial concentrations ($300{\sim}500mg\;L^{-1}$), contact time (1 ~ 12 h), and adsorption temperature (303 ~ 323 K) through batch experiments. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Harkins-Jura, and Elovich isotherm models. The estimated Langmuir dimensionless separation factor ($R_L=0.018{\sim}0.040$) and Freundlich constant ($n^{-1}=0.176{\sim}0.206$) show that adsorption of brilliant green by activated carbon is an effective treatment process. Adsorption heat constants ($B=12.43{\sim}17.15J\;mol^{-1}$) estimated by the Temkin equation corresponded to physical adsorption. The isothermal parameter ($A_{HJ}$) by the Harkins-Jura equation showed that the heterogeneous pore distribution increased with increasing temperature. The maximum adsorption capacity by the Elovich equation was found to be much smaller than the experimental value. The adsorption process was best described by the pseudo second order model, and intraparticle diffusion was a rate limiting step in the adsorption process. The intraparticle diffusion rate constant increased because the dye activity increased with increases in the initial concentration. Also, as the initial concentration increased, the influence of the boundary layer also increased. Negative Gibbs free energy ($-10.3{\sim}-11.4kJ\;mol^{-1}$), positive enthalpy change ($18.63kJ\;mol^{-1}$), and activation energy ($26.28kJ\;mol^{-1}$) indicate respectively that the adsorption process is spontaneous, endothermic, and physical adsorption.

Innovative Technology for Removal of Dispersants used in Oil Spill Remediation Using the Magnetic Separation (자성 분리를 이용한 해상 유류오염제어에 사용되는 유화제를 제거하는 새로운 기술에 대한 연구)

  • Chun, Chan-Lan;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.679-688
    • /
    • 2000
  • Dispersants, which are used to break water-in-oil emulsions and to remediate oil-spills, are another water pollutants. In this study, magnetic separation technology was applied to remove dispersants from the sea. Magnetite and maghemite were used as magnetic sorbents and SDDBS, an anionic surfactant and Triton X-100, a nonionic surfactant, were employed as dispersants. Batch experiments were undertaken to study the sorption capacity and sorption equilibrium, and water-bath experiments were conducted to simulate the real situation and to describe the recovery of magnetic particles by the permanent magnet or electromagnet. Maghemite has rather constant removal efficiency for dispersants, regardless of surfactant species. On the other hand, removal efficiency by magnetite is higher for anionic surfactant than maghemite and is higher in distilled water than in seawater which contains more ions. The sorption of dispersants to magnetite is explained by electrostatic attraction and that of maghemite is described not only by electrostatic attraction, but also by structural characteristics that provide high sorption ability and surface condition. Water bath experimental results showed that recovery efficiency of magnetic particle after sorption for dispersants is nearly 100%. It is suggested that this magnetic separation technology is an effective way of dispersant removal because of short operating time, high sorption capacity, and high recovery efficiency of sorbents.

  • PDF

Adsorption Characteristics Analysis of 2,4-Dichlorophenol in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel using Response Surface Modeling Approach (반응표면분석법을 이용한 폐감귤박 활성탄에 의한 수중의 2,4-Dichlorophenol 흡착특성 해석)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.723-730
    • /
    • 2017
  • The batch experiments by response surface methodology (RSM) have been applied to investigate the influences of operating parameters such as temperature, initial concentration, contact time and adsorbent dosage on 2,4-dichlorophenol (2,4-DCP) adsorption with an activated carbon prepared from waste citrus peel (WCAC). Regression equation formulated for the 2,4-DCP adsorption was represented as a function of response variables. Adequacy of the model was tested by the correlation between experimental and predicted values of the response. A fairly high value of $R^2$ (0.9921) indicated that most of the data variation was explained by the regression model. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. These results showed that the model used to fit response variables was significant and adequate to represent the relationship between the response and the independent variables. The kinetics and isotherm experiment data can be well described with the pseudo-second order model and the Langmuir isotherm model, respectively. The maximum adsorption capacity of 2,4-DCP on WCAC calculated from the Langmuir isotherm model was 345.49 mg/g. The rate controlling mechanism study revealed that film diffusion and intraparticle diffusion were simultaneously occurring during the adsorption process. The thermodynamic parameters indicated that the adsorption reaction of 2,4-DCP on WCAC was an endothermic and spontaneous process.

Study of Equilibrium, Kinetic and Thermodynamic Parameters about Fluorescein Dye Adsorbed onto Activated Carbon (활성탄을 이용한 플루오레세인 염료 흡착에 대한 평형, 동력학 및 열역학 파라미터의 연구)

  • Lee, Jong-Jib;Um, Myeong Heon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.450-455
    • /
    • 2012
  • The paper includes the utlization of an activated carbon as a potential adsorbent to remove a hazardous fluorescein dye from an aqueous solution. Batch adsorption experiments were carried out for the removal of fluorescein dyes using a granular activated carbon as an adsorbent. The effects of various parameters such as pH, amount of adsorbent, contact time, initial concentration and temperature of the adsoprtion system were investigated. The experimental results revealed that activated carbon exhibit high efficiencies to remove fluorescein dyes from the aqueous solution. The equilibrium process can be well described by Freundlich isotherm in the temperature range from 298 K to 318 K. From adsorption kinetic experiments, the adsorption process followed a pseudo second order kinetic model, and the adsorption rate constant ($k_2$) decreased with increasing the initial concentration of fluorescein. The free energy of adsorption ${\Delta}G^0$), enthalpy ${\Delta}H^0$), and entropy (${\Delta}S^0$) change were calculated to predict the nature adsorption. The estimated values for ${\Delta}G^0$ were -17.11~-20.50 kJ/mol over an activated carbon at 250 mg/L, indicated toward a spontaneous process. The positve value for ${\Delta}H^0$, 33.2 kJ/mol, indicates that the adsorption of fluorescein dyes on an activated carbon is an endothermic process.

Evaluation of Removal Characteristics of Taste and Odor Causing Compounds using Meso-Porous Absorbent (메조공극 흡착제를 이용한 상수원수내 맛·냄새 유발물질 제거특성 평가)

  • Kim, Jong-Doo;Park, Chul-Hwi;Yun, Yeo-Bog;Lee, Dae-Sung;Kim, Hyo-Jeon;Kang, Seok-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • The objective of this study was to evaluate the characteristic of adsorption by using a meso-porous adsorbent (MPA), and investigate the removal efficiency of geosmin which taste and odor causing compounds in drinking water supplies through batch test. The results for the adsorption isotherm was analyzed by using the Langmuir equation and Freundlich equation, generally being applied. And the study showed that the both Langmuir and Freundlich equation explains the results better. Both of pseudo-first-order model and pseudo-second-order model were respectively applied for evaluation of kinetic sorption property of geosmin onto MPA. The adsorption experiment results using MPA showed that maximum adsorption capacity of MPA was lower 7 times than that of GAC, and adsorption rate of MPA was faster 11 times than that of GAC, on the basis of pseudo-first-order model. Therefore, it was determined that MPA was effectively able to remove geosmin in drinking water supplies in short EBCT condition, but regeneration cycle in MAP process was shorter than that in conventional process.

A Study on the Underground Movement of Radionuclides(I) (방사성핵종의 지하이동 연구)

  • Hun Hwee Park;Kyong Won Han;Nak June Sung;Chul Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.64-69
    • /
    • 1984
  • With regard to the radioactive waste disposal, adsorption properties and migration rates have been evaluated for Cs-137 and Sr-90 with the domestic clay sampled from Cnyang, Sanchong and Mooan. Sorption coefficients (Ksorp) were determined by batch experiments. The measured values of Ksorp were ranged from 8000 to 17,000 ml/gr for Cs-137 of 0.1$\mu$Ci/ml, and from 10,000 to 15,000m1/gr for Sr-90 of 0.l$\mu$Ci/ml. Remarkably, Mooan clay showed lower values of Ksorp than those of the others. This could be explained by the poor soprtion capacity of the quartz found only in the Mooan clay. For the quantitative analysis, sorption isotherm equations of Freundlich type were made with the obtained values of Ksorp. $C_{R}$=18.0 $C_{A}$$^{0.74}$ : Cs-137, $C_{R}$=0.84 $C_{A}$$^{0.45}$ : Sr-90. By introducing the BOX model combined with the above relationships, simulation of underground nuclide movement was carried out. The results showed that the domestic clays could be the effective backfill material for repositories.itories.ies.

  • PDF