• Title/Summary/Keyword: basin edge effect

Search Result 9, Processing Time 0.021 seconds

Basin edge effect on industrial structures damage pattern at clayey basins

  • Khanbabazadeh, Hadi;Zulfikar, Abdullah C.;Yesilyurt, Ali
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.575-585
    • /
    • 2020
  • In this numerical study, the 2D dynamic behavior of a clayey basin and its effect on damage pattern over basin edge are investigated. To attain this goal, a fully nonlinear time domain analysis method has been applied. Then, the fragility curves of the considered two typical industrial structures for that certain point are estimated using the acceleration time histories recorded at each surface point. The results show that the use of the damage related parameters in site effect analyses, instead of amplification curves, can yield more realistic estimation of the basin dynamic response. In a distance about 150 m from outcrop at the basin edge, the differences between fragility curves increase when increasing the distance from outcrop with respect to the reference rock site. Outside this region and towards the basin center, they tend to occur in rather single curves. Furthermore, to connect the structural damage to the basin edge effect, the earthquake demand value at different points for two typical structures was evaluated. It was seen that the probability of occurrence of damage increases over 250 m from outcrop, while the effect of the basin edge was limited to 150 m in case of the basin edge evaluation by using fragility curves.

Nonlinearity effect on the dynamic behavior of the clayey basin edge

  • Hadi Khanbabazadeh
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.367-380
    • /
    • 2024
  • Investigations has shown that the correct estimation of the effective amplification period is as important as the amplification value itself. It gets more important in 2D basins. This study presents a quantitative coefficient for consideration of the nonlinearity effect in terms of amplification value and the shift in its period which is missing or ineffectively considered in the previous studies. To attain this goal, by the application of a time domain fully nonlinear method, the deviation of the more common equivalent linear results from the basin nonlinear behavior under strong ground motions is investigated quantitatively. Also, despite the increase in the damping ratio, the possibility of the increase in the amplification due to the increase in motion strength is shown. To make the results useful in engineering practice, by introducing nonlinearity ratio, the effect of the nonlinearity is quantitatively estimated for two soft and stiff clayey basins with three different depths under a set of motions scaled to two target spectrum. Results show that at the 100 m depth soft clayey basin, while the nonlinearity ratio shows a 35% deviation at the basin edge part under DD1 motion level, its effect moves to the central part with 20% effect under DD3 motion level. By the increase in depth to 150 m, the results show a decrease in the overall effect of the nonlinear behavior for both clay types. At this depth, the nonlinearity ratio gives a 30% and 17% difference on a limited distance from outcrop at the soft clayey basin under DD1 and DD3 motion levels, respectively. At the 30 m depth basins, the nonlinearity ratio shows up to 25% difference for different cases. The presented ratio would be introduced as nonlinearity coefficients for consideration of the nonlinearity effects in the codes. The presented quantitative margins will help the designer to have a better understanding of the amplification period change because of nonlinearity over 2D basin surface.

3D Simulation of Earthquake Ground Motion Using Locally Variable Time-Step Finite-Difference Method

  • Kang, Tae-Seob;Baag, Chang-Eob
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.18-18
    • /
    • 2003
  • Three-dimensional finite-difference simulation of earthquake ground motion is performed using a locally variable time-step (LVTS) scheme matching with discontinuous grids. Discontinuous grids in three directions and extension of the discontinuous grids' boundary to the free-surface in the LVTS scheme minimize the cost of both the computational memory and the CPU time for models like the localized sedimentary basin. A simplified model of sedimentary basin is dealt to show the feasibility and efficiency of the LVTS scheme. The basin parameters are examined to understand the main characteristics on ground-motion response in the basin. The results show that the seismic energy is concentrated on a marginal area of the basin far from the source. This focusing effect is mainly due to the constructive interference of the direct S-wave with the basin-edge induced surface waves. The ground-motion amplification over the deepest part of the basin is relatively lower than that above the shallow basin edge. Therefore the ground-motion amplification may be more related to the source azimuth or the direction of the incident waves into the basin rather than the depth of it.

  • PDF

Seismic behavior of the shallow clayey basins subjected to obliquely incident wave

  • Khanbabazadeh, Hadi;Iyisan, Recep;Ozaslan, Bilal
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.183-195
    • /
    • 2022
  • Under the effects of the near-field earthquakes, the incident angle of the incoming wave could be different. In this study, the influences of some parameters such as incident angle, basin edge, peak ground acceleration level of the bedrock motion as well as different clay types with different consistency on the amplification behavior of the shallow basins are investigated. To attain this goal, the numerical analyses of the basins filled with three different clay types are performed using a fully nonlinear method. The two dimensional models of the basins are subjected to a set of strong ground motions with different peak ground acceleration levels and three different incident angles of 30◦, 45◦ and 90◦ with respect to the horizontal axes. The results show the dominant effect of the obliquely subjected waves at most cases. The higher effect of the 45◦ incident angle on the basin response was concluded. In the other part of this study, the spectral amplification curves of the surface points were compared. It was seen that the maximum spectral amplification of different surface points occurs at different periods. Also, it is affected by the increase in the peak acceleration level of the incoming motions.

Modeling of Earthquake Ground Motion in a Small-Scale Basin (소규모 분지에서의 지진 지반운동 모델링)

  • Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.92-101
    • /
    • 2012
  • Three-dimensional finite-difference simulation in a small-scale half-sphere basin with planar free-surface is performed for an arbitrary shear-dislocation point source. A new scheme to deal with free-surface boundary condition is presented. Then basin parameters are examined to understand main characteristics on ground-motion response in the basin. To analyze the frequency content of ground motion in the basin, spectral amplitudes are compared with each other for four sites inside and outside the basin. Also particle motions for those sites are examined to find which kind of wave plays a dominant role in ground-motion response. The results show that seismic energy is concentrated on a marginal area of the basin far from the source. This focusing effect is mainly due to constructive interference of the direct Swave with basin-edge induced surface waves. Also, ground-motion amplification over the deepest part of the basin is relatively lower than that above shallow basin edge. In the small-scale basin with relatively simple bedrock interface, therefore, the ground-motion amplification may be more related to the source azimuth or direction of the incident waves into the basin rather than depth of it.

High Resolution Gravity Mapping and Its Interpretation from both Shipborne and Satellite Gravity Data in the Ulleung Basin (울릉분지에서의 선상중력과 위성중력 통합에 의한 중력 해상도 향상 및 해석)

  • Park, Chan Hong;Kim, Jeong U;Heo, Sik;Won, Jung Seon;Seok, Bong Chul;Yu, Hae Su
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.27-38
    • /
    • 1999
  • The errors between track segments or at the cross-over points of shipborne gravity were successfully reduced by applying a cross-over error adjustment technique using satellite gravity. The integration of shipborne and satellite altimeter-implied free-air gravity anomalies after the cross-over error adjustment resulted in a high resolution gravity map which contains both short and long wavelength components. The successful adjustment of the cross-over errors in the shipborne gravity using the satellite gravity suggests that the shipborne gravity can be combined with the satellite anomalies characterized by a stable and long wavelength component. The resulting free-air anomaly map is evenly harmonized with both short and long wavelength anomalies. Thus the corrected anomaly map can be better used for the geological interpretation. Free-air anomalies with more than 140 mGal in total variations generally correspond to the seafloor topographic changes in their regional patterns. A series of gravity highs are aligned from the Korea Plateau to the Oki Island, which are interpreted to be caused by seamounts or volcanic topographies. The gravity minima along the western and southern shelf edge are associated not only with the local basement morphology and thick sediment fill at the continental margin, but also possibly with the crustal edge effect known for passive continental margins. Series of NE-trending linear anomalies are possibly caused by a swarm of volcanic intrusions followed the initial opening of the Ulleung Basin. The linear high anomalies in the Ulleung Plateau are terminated by the straightly NNW-trending anomalies with a sharp gradient in its western boundary which indicates a fault-line scarp. The opposite side adjoined with the fault-line scarp shows no correlation with the fault-line scarp in geometry indicating that the block might be horizontally slided from the north. A gravity high in contrast to the deepening in seafloor toward the northeastern central Ulleung Basin is probably responsible for the thin crust and shallow seated mantle. The gravity minima along the western and southern shelf edge are associated not only with the local basement morphology and thick sediment fill at the continental margin, but also possibly with the crustal edge effect known for passive continental margins. Series of NE-trending linear anomalies are possibly caused by a swarm of volcanic intrusions followed the initial opening of the Ulleung Basin. The linear high anomalies in the Ulleung Plateau are terminated by the straightly NNW-trending anomalies with a sharp gradient in its western boundary which indicates a fault-line scarp. The opposite side adjoined with the fault-line scarp shows no correlation with the fault-line scarp in geometry indicating that the block might be horizontally slided from the north. A gravity high in contrast to the deepening in seafloor toward the northeastern central Ulleung Basin is probably suggestive of a thin crust and shallow seated mantle.

  • PDF

Investigation on the wake evolution of contra-rotating propeller using RANS computation and SPIV measurement

  • Paik, Kwang-Jun;Hwang, Seunghyun;Jung, Jaekwon;Lee, Taegu;Lee, Yeong-Yeon;Ahn, Haeseong;Van, Suak-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.595-609
    • /
    • 2015
  • The wake characteristics of Contra-Rotating Propeller (CRP) were investigated using numerical simulation and flow measurement. The numerical simulation was carried out with a commercial CFD code based on a Reynolds Averaged Navier-Stokes (RANS) equations solver, and the flow measurement was performed with Stereoscopic Particle Image Velocimetry (SPIV) system. The simulation results were validated through the comparison with the experiment results measured around the leading edge of rudder to investigate the effect of propeller operation under the conditions without propeller, with forward propeller alone, and with both forward and aft propellers. The evolution of CRP wake was analyzed through velocity and vorticity contours on three transverse planes and one longitudinal plane based on CFD results. The trajectories of propeller tip vortex core in the cases with and without aft propeller were also compared, and larger wake contraction with CRP was confirmed.

The Edge Computing System for the Detection of Water Usage Activities with Sound Classification (음향 기반 물 사용 활동 감지용 엣지 컴퓨팅 시스템)

  • Seung-Ho Hyun;Youngjoon Chee
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.147-156
    • /
    • 2023
  • Efforts to employ smart home sensors to monitor the indoor activities of elderly single residents have been made to assess the feasibility of a safe and healthy lifestyle. However, the bathroom remains an area of blind spot. In this study, we have developed and evaluated a new edge computer device that can automatically detect water usage activities in the bathroom and record the activity log on a cloud server. Three kinds of sound as flushing, showering, and washing using wash basin generated during water usage were recorded and cut into 1-second scenes. These sound clips were then converted into a 2-dimensional image using MEL-spectrogram. Sound data augmentation techniques were adopted to obtain better learning effect from smaller number of data sets. These techniques, some of which are applied in time domain and others in frequency domain, increased the number of training data set by 30 times. A deep learning model, called CRNN, combining Convolutional Neural Network and Recurrent Neural Network was employed. The edge device was implemented using Raspberry Pi 4 and was equipped with a condenser microphone and amplifier to run the pre-trained model in real-time. The detected activities were recorded as text-based activity logs on a Firebase server. Performance was evaluated in two bathrooms for the three water usage activities, resulting in an accuracy of 96.1% and 88.2%, and F1 Score of 96.1% and 87.8%, respectively. Most of the classification errors were observed in the water sound from washing. In conclusion, this system demonstrates the potential for use in recording the activities as a lifelog of elderly single residents to a cloud server over the long-term.

The Analysis of Landscape Ecological Effect of Forest by Trail-Building (등산로 개설에 의한 산림의 경관생태학적 영향 분석)

  • Lee, Woo-Sung;Park, Kyung-Hun;Kim, Dong-Pil
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.2
    • /
    • pp.128-137
    • /
    • 2008
  • The purpose of this study is to analyze the effect of hiking trails on forest landscape's fragmentation, based on which also to assess the landscape-ecology-based integrity by small drainage area by selecting Bukhansan National Park as a survey target. The results of effect analysis are as follow; size of forest patch decreased; the density of patch and edge increased; patch shape became complicated; the dimensions of core area noticeably decreased and proximity degree between patch increased after trail-building. In addotion, the assessment results of overall landscape ecology-based integrity by small drainage basin showed that the Bukhansan catchment area was highest making 3.7 point, while Gugi catchment area was rated the lowest making 1.6 point. Putting the above results together, it is necessary to prohibit the opening up of unnecessary trails and to make room for ecological restoration of damaged and disturbance area to their original state as nature goes for landscape-ecology-based conservation and management of forests.