Browse > Article
http://dx.doi.org/10.12989/gae.2020.23.6.575

Basin edge effect on industrial structures damage pattern at clayey basins  

Khanbabazadeh, Hadi (Department of Civil Engineering, Gebze Technical University)
Zulfikar, Abdullah C. (Department of Civil Engineering, Gebze Technical University)
Yesilyurt, Ali (Department of Civil Engineering, Gebze Technical University)
Publication Information
Geomechanics and Engineering / v.23, no.6, 2020 , pp. 575-585 More about this Journal
Abstract
In this numerical study, the 2D dynamic behavior of a clayey basin and its effect on damage pattern over basin edge are investigated. To attain this goal, a fully nonlinear time domain analysis method has been applied. Then, the fragility curves of the considered two typical industrial structures for that certain point are estimated using the acceleration time histories recorded at each surface point. The results show that the use of the damage related parameters in site effect analyses, instead of amplification curves, can yield more realistic estimation of the basin dynamic response. In a distance about 150 m from outcrop at the basin edge, the differences between fragility curves increase when increasing the distance from outcrop with respect to the reference rock site. Outside this region and towards the basin center, they tend to occur in rather single curves. Furthermore, to connect the structural damage to the basin edge effect, the earthquake demand value at different points for two typical structures was evaluated. It was seen that the probability of occurrence of damage increases over 250 m from outcrop, while the effect of the basin edge was limited to 150 m in case of the basin edge evaluation by using fragility curves.
Keywords
site effect; basin edge effect; 2D dynamic behavior; fragility curve;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Riga, E., Makra, K. and Pitilakis, K. (2016), "Aggravation factors for seismic response of sedimentary basins: A code oriented parametric study", Soil Dyn. Earthq. Eng., 91, 116-132. https://doi.org/10.1016/j.soildyn.2016.09.048.   DOI
2 Riga, E., Makra, K. and Pitilakis, K. (2018), "Investigation of the effects of sediments inhomogeneity and nonlinearity on aggravation factors for sedimentary basins", Soil Dyn. Earthq. Eng., 110, 284-299. https://doi.org/10.1016/j.soildyn.2018.01.016.   DOI
3 Saenz, M., Sierra, C., Vergara, J., Jaramillo, J. and Gomez, J. (2019), "Site specific analysis using topography conditioned response spectra", Soil Dyn. Earthq. Eng., 123, 470-497. https://doi.org/10.1016/j.soildyn.2019.03.004.   DOI
4 Safak, E. (2001), "Local site effects and dynamic soil behavior", Soil Dyn. Earthq. Eng., 21, 453-458. https://doi.org/10.1016/S0267-7261(01)00021-5.   DOI
5 Senel, S.M. and Kayhan, A.H. (2010), "Fragility based damage assesment in existing precast industrial buildings: A case study for Turkey", Struct. Eng. Mech., 11(1), 39-60. http://doi.org/10.12989/sem.2010.34.1.039.   DOI
6 Semblat, J.F., Kham, M., Parara, E., Bard, P.Y., Pitilakis, K., Makra, K. and Raptakis, D. (2005), "Seismic wave amplification: Basin geometry vs soil layering", Soil Dyn. Earthq. Eng., 25, 529-538. https://doi.org/10.1016/j.soildyn.2004.11.003.   DOI
7 Park, Y.J., Reinhorn, A.M. and Kunnath, S. (1987), "IDARC: Inelastic damage analysis of reinforced concrete frame-shear-wall structures", Technical Report NCEER-87-0008, State University of New York, Buffalo, New York, U.S.A.
8 Reinhorn, A.M., Roh, H., Sivaselvan, M., Kunnath, S.K., Valles, R.E., Madan, A. and Park, Y.J. (2009), IDARC2D Version 7.0: A Program for the Inelastic Damage Analysis of Structures (MCEER-09-0006).
9 Singhal, A. and Kiremidjian, A.S. (1996), "Method for probabilistic evaluation of seismic structural damage", J. Struct. Eng., 122(12), 1459-1467. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1459).   DOI
10 Sivaselvan, M.V. and Reinhorn, A.M. (2000), "Hysteretic models for deteriorating inelastic structures", J. Eng. Mech., 126(6), 633-640. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:6(633).   DOI
11 Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech. Div., 95(4), 859-878.   DOI
12 Khanbabazadeh, H., Iyisan, R., Ansal, A. and Zulfikar, C. (2018), "Nonlinear dynamic behavior of the basins with 2D bedrock", Soil Dyn. Earthq. Eng., 107, 108-115. https://doi.org/10.1016/j.soildyn.2018.01.011.   DOI
13 Kircher, C.A., Nassar, A.A., Kustu, O. and Holmes, W.T. (1997), "Development of building damage functions for earthquake loss estimation", Earthq. Spectra, 13(4), 663-680. https://doi.org/10.1193/1.1585974.   DOI
14 Kircil, M.S. and Polat, Z. (2006), "Fragility analysis of mid-rise R/C frame buildings", Eng. Struct., 28(9), 1335-1345. https://doi.org/10.1016/j.engstruct.2006.01.004.   DOI
15 Kuhlemeyer, R.L. and Lysmer, J. (1973), "Finite element method accuracy for wave propagation problems", J. Soil Mech. Found. Div., 99, 421-427.   DOI
16 Kunnath, S.K., Reinhorn, A.M. and Lobo, R.F. (1992b), "IDARC version 3.0: A program for the inelastic damage analysis of Reinforced Concrete structures", Report No. NCEER-92-0022, National Center for Earthquake Engineering Research, University at Buffalo, The State University of New York, New York, U.S.A.
17 Madiai, C., Facciorusso, J., Gargini, E. and Baglione, M. (2016), "1D versus 2D site effects from numerical analyses on a cross section at Barberino di Mugello (Tuscany, Italy)", Procedia Eng., 158, 499-504. https://doi.org/10.1016/j.proeng.2016.08.479.   DOI
18 Makra, K. and Chavez-Garci, F.J. (2016), "Site effects in 3D basins using 1D and 2D models: an evaluation of the differences based on simulations of the seismic response of Euroseistest", B. Earthq. Eng., 14(4), 1177-1194. https://doi.org/10.1007/s10518-015-9862-7.   DOI
19 Manakou, M.V., Raptakis, D.G., Chavez-Garci, F.J., Apostolidis, P.I. and Pitilakis, K.D. (2010), "3D soil structure of the Mygdonian basin for site response analysis", Soil Dyn. Earthq. Eng., 30(11), 1198-1211. https://doi.org/10.1016/j.soildyn.2010.04.027.   DOI
20 Makra, K., Chavez-Garcia, F.J., Raptakis, D. and Pitilakis, K. (2005), "Parametric analysis of the seismic response of a 2D sedimentary valley: Implications for code implementations of complex site effects", Soil Dyn. Earthq. Eng., 25, 303-315. https://doi.org/10.1016/j.soildyn.2005.02.003.   DOI
21 Mayoral, J.M., Asimaki, D., Tepalcapa, S., Wood, C., Sancha, A.R., Hutchinson, T., Franke, K. and Montalva, G. (2019), "Site effects in Mexico City basin: Past and present", Soil Dyn. Earthq. Eng., 121, 369-382. https://doi.org/10.1016/j.soildyn.2019.02.028.   DOI
22 Palanci, M., Senel, S.M. and Kalkan, A. (2017), "Assessment of one story existing precast industrial buildings in Turkey based on fragility curves", B. Earthq. Eng., 15(1), 271-289. https://doi.org/10.1007/s10518-016-9956-x.   DOI
23 Paolucci, R. (1999), "Shear resonance frequencies of alluvial valleys by Rayleigh's method", Earthq. Spectra, 15(3), 503-521. https://doi.org/10.1193/1.1586055.   DOI
24 Gautam, D., Forte, G. and Rodrigues, H. (2016), "Site effects and associated structural damage analysis in Kathmandu Valley, Nepal", Earthq. Struct., 10(5), 1013-1032. https://doi.org/10.12989/eas.2016.10.5.1013.   DOI
25 Gelagoti, F., Kourkoulis, R., Anastasopoulos, I., Tazoh, T. and Gazetas, G. (2010), "Seismic wave propagation in a very soft alluvial valley: Sensitivity to ground-motion details and soil nonlinearity, and generation of a parasitic vertical component", B. Seismol. Soc. Am., 100(6), 3035-3054. https://doi.org/10.1785/0120100002.   DOI
26 Kamalian, M., Jafari, M.K., Sohrabi-Bidar, A., Razmkhah, A. and Gatmiri, B. (2006), "Time domain two-dimensional site response analysis of non-homogeneous topographic structures by a hybrid BE/FE method", Soil Dyn. Earthq. Eng., 26, 753-765. https://doi.org/10.1016/j.soildyn.2005.12.008.   DOI
27 Gurpinar, A., Abali, M., Yucemen, M.S. and Yesilcay, Y. (1978), "Feasibility of mandatory earthquake insurance in Turkey", Earthquake Engineering Research Center, Report No. 78-05, Middle East Technical University, Ankara, Turkey (in Turkish).
28 Heymsfield, E. (2000), "Two-dimensional scattering of SH waves in a soil layer underlain with bedrock", Soil Dyn. Earthq. Eng., 19(7), 489-500. https://doi.org/10.1016/S0267-7261(00)00030-0.   DOI
29 Ishibashi, I. and Zhang, X. (1993), "Unified dynamic shear moduli and damping ratios of sand and clay", Soils Found., 33(1), 182-191. https://doi.org/10.3208/sandf1972.33.182.   DOI
30 Iyisan, R. and Khanbabazadeh, H. (2013), "A numerical study on the basin edge effect on soil amplification", B. Earthq. Eng., 11(5), 1305-1323. https://doi.org/10.1007/s10518-013-9451-6.   DOI
31 Kawase, H. and Aki, K. (1989), "A study on the response of a soft basin for incident. S, P and Rayleigh waves with special reference to the long duration observed in Mexico City", B. Seismol. Soc. Am., 79(5), 1361-1382.
32 Khanbabazadeh, H. and Iyisan, R. (2014a), "A numerical study on the 2D behavior of clayey basins", Soil Dyn. Earthq. Eng., 66, 31-41. https://doi.org/10.1016/j.soildyn.2014.06.029.   DOI
33 Khanbabazadeh, H. and Iyisan, R. (2014b), "A numerical study on the 2D behavior of the single and layered clayey basins", B. Earthq. Eng., 12(4), 1515-1536. https://doi.org/10.1007/s10518-014-9590-4.   DOI
34 Assimaki, D. and Gazetas, G. (2004), "Soil and topographic amplification on canyon banks and the 1999 Athens earthquake", J. Earthq. Eng., 8(1), 1-43. https://doi.org/10.1142/S1363246904001250.   DOI
35 Khanbabazadeh, H., Hasal, M.E. and Iyisan, R. (2019), "2D seismic response of the Duzce Basin, Turkey", Soil Dyn. Earthq. Eng., 125, 105754. https://doi.org/10.1016/j.soildyn.2019.105754.   DOI
36 Falconea, G., Boldinib, D. and Amorosi, A. (2018), "Site response analysis of an urban area: A multi-dimensional and non-linear approach", Soil Dyn. Earthq. Eng., 109, 33-45. https://doi.org/10.1016/j.soildyn.2018.02.026.   DOI
37 Frankel, A. (1993), "Three dimensional simulation of ground motion in the Santa Bernardino Valley, California, for hypothetical earthquake on the San Andreas fault", B. Seismol. Soc. Am., 83(4), 1020-1041.
38 Alvarez, S., Sanchez-Sesma, F.J., Benito, J. and Alarcon, E. (2004), "The direct boundary element method: 2D site effects assessment on laterally varying layered media (methodology)", Soil Dyn. Earthq. Eng., 24(2), 167-180. https://doi.org/10.1016/j.soildyn.2003.09.003.   DOI
39 Askan, A. and Yucemen, M.S. (2010), "Probabilistic methods for the estimation of potential seismic damage: Application to reinforced concrete buildings in Turkey", Struct. Saf., 32(4), 262-271. https://doi.org/10.1016/j.strusafe.2010.04.001.   DOI
40 Abraham, J.R., Lai, C.G. and Papageorgiou, A. (2015), "Basin-effects observed during the 2012 Emilia earthquake sequence in Northern Italy", Soil Dyn. Earthq. Eng., 78, 230-242. https://doi.org/10.1016/j.soildyn.2015.08.007.   DOI
41 Abraham, J.R., Smerzini, C., Paolucci, R. and Lai, C.G. (2016), "Numerical study on basin-edge effects in the seismic response of the Gubbio valley, Central Italy", B. Earthq. Eng., 14(6), 1437-1459. https://doi.org/10.1007/s10518-016-9890-y.   DOI
42 Cundall P.A. (2008), FLAC3D Manual: A computer program for fast Lagrangian analysis of Continua (Version 4.0), Minneapolis, Minnesota, U.S.A
43 Bakir, B.S., Ozkan, M.Y. and Ciliz, S. (2002), "Effects of basin edge on the distribution of damage in 1995 Dinar, Turkey earthquake", Soil Dyn. Earthq. Eng., 22(4), 335-345. https://doi.org/10.1016/S0267-7261(02)00015-5.   DOI
44 Beyen, K. and Erdik, M. (2004), "Two-dimensional nonlinear site response analysis of Adapazari plain and predictions inferred from aftersh ocks of the Kocaeli earthquake of 17 August 1999", Soil Dyn. Earthq. Eng., 24(3), 261-279. https://doi.org/10.1016/j.soildyn.2003.10.009.   DOI
45 Costanzo, A., d'Onofrio, A. and Silvestri, F. (2019), "Seismic response of a geological, historical and architectural site: The Gerace cliff (southern Italy)", B. Eng. Geol. Environ., 78(8), 5617-5633. https://doi.org/10.1007/s10064-019-01515-0.   DOI
46 Cundall, P.A., Hansteen, H., Lacasse, S. and Selnes, P.B. (1980), "NESSI-soil structure interaction program for dynamic and static problems", Report 51508-9, Norwegian Geotechnical Institute.
47 Dumova-Jovanoska, E. (2000), "Fragility curves for reinforced concrete structures in Skopje (Macedonia) region", Soil Dyn. Earth. Eng., 19(6), 455-466. https://doi.org/10.1016/S0267-7261(00)00017-8.   DOI
48 Eren, C. and Lus, H. (2015), "A risk based PML estimation method for single-storey reinforced concrete industrial buildings and its impact on earthquake insurance rates", B. Earthq. Eng., 13(7), 2169-2195. https://doi.org/10.1007/s10518-014-9712-z.   DOI
49 Faccioli, E., Vanini, M. and Frassine, L. (2002), "Complex site effects in earthquake ground motion, including topography", Proceedings of the 12th European Conference on Earthquake Engineering, London, U.K., September.
50 Stanko, D., Gulerce, Z., Markusic, S. and Salic, R. (2019), "Evaluation of the site amplification factors estimated by equivalent linear site response analysis using time series and random vibration theory based approaches", Soil Dyn. Earthq. Eng., 117, 16-29. https://doi.org/10.1016/j.soildyn.2018.11.007.   DOI
51 Tsai, C.C. and Liu, H.W. (2017), "Site response analysis of vertical ground motion in consideration of soil nonlinearity", Soil Dyn. Earthq. Eng., 102, 124-136. https://doi.org/10.1016/j.soildyn.2017.08.024.   DOI
52 Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141.   DOI
53 XTRACT v3.0.7. (2006), Cross-sectional structural analysis of components, Imbsen Software Systems, Sacramento, California, U.S.A.
54 Yniesta, S., Brandenberg, S.J. and Shafiee, A. (2017), "ARCS: A one dimensional nonlinear soil model for ground response analysis", Soil Dyn. Earthq. Eng., 102, 75-85. https://doi.org/10.1016/j.soildyn.2017.08.015.   DOI
55 Zhu, C. and Thambiratnam, D. (2016), "Interaction of geometry and mechanical property of trapezoidal sedimentary basins with incident SH waves", B. Earthq. Eng., 14(11), 2977-3002. https://doi.org/10.1007/s10518-016-9938-z.   DOI
56 Zhu, C., Chavez-Garcia, F.J., Thambiratnam, D. and Gallage, C. (2018), "Quantifying the edge-induced seismic aggravation in shallow basins relative to the 1D SH modelling", Soil Dyn. Earthq. Eng., 115, 402-412. https://doi.org/10.1016/j.soildyn.2018.08.025.   DOI