• 제목/요약/키워드: basic operations in arithmetic

검색결과 21건 처리시간 0.024초

Tongwen Suanzhi (同文算指) and transmission of bisuan (筆算 written calculation) in China: from an HPM (History and Pedagogy of Mathematics) viewpoint

  • SIU, Man-Keung
    • 한국수학사학회지
    • /
    • 제28권6호
    • /
    • pp.311-320
    • /
    • 2015
  • In 1613 the official-scholar LI Zhi-zao (李之藻) of the Ming Dynasty, in collaboration with the Italian Jesuit Matteo RICCI (利瑪竇), compiled the treatise Tongwen Suanzhi (同文算指). This is the first book which transmitted into China in a systematic and comprehensive way the art of written calculation that had been in common practice in Europe since the sixteenth century. This paper tries to see what pedagogical lessons can be gleaned from the book, in particular on the basic operations in arithmetic and related applications in various types of problems which form the content of modern day mathematics in elementary school education.

자기검사 Pulse별 잉여수연산회로를 이용한 고신뢰화 Fault Tolerant 디지털필터의 구성에 관한 연구 (Implementation of High Reliable Fault-Tolerant Digital Filter Using Self-Checking Pulse-Train Residue Arithmetic Circuits)

  • 김문수;손동인;전구제
    • 대한전자공학회논문지
    • /
    • 제25권2호
    • /
    • pp.204-210
    • /
    • 1988
  • The residue number system offers the possibility of high-speed operation and error detection/correction because of the separability of arithmetic operations on each digit. A compact residue arithmetic module named the self-checking pulse-train residue arithmetic circuit is effectively employed as the basic module, and an efficient error detection/correction algorithm in which error detection is performed in each basic module and error correction is performed based on the parallelism of residue arithmetic is also employed. In this case, the error correcting circuit is imposed in series to non-redundant system. This design method has an advantage of compact hardware. Following the proposed method, a 2nd-order recursive fault-tolerant digital filter is practically implemented, and its fault-tolerant ability is proved by noise injection testing.

  • PDF

유한체상의 자원과 시간에 효율적인 다항식 곱셈기 (Resource and Delay Efficient Polynomial Multiplier over Finite Fields GF (2m))

  • 이건직
    • 디지털산업정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.1-9
    • /
    • 2020
  • Many cryptographic and error control coding algorithms rely on finite field GF(2m) arithmetic. Hardware implementation of these algorithms needs an efficient realization of finite field arithmetic operations. Finite field multiplication is complicated among the basic operations, and it is employed in field exponentiation and division operations. Various algorithms and architectures are proposed in the literature for hardware implementation of finite field multiplication to achieve a reduction in area and delay. In this paper, a low area and delay efficient semi-systolic multiplier over finite fields GF(2m) using the modified Montgomery modular multiplication (MMM) is presented. The least significant bit (LSB)-first multiplication and two-level parallel computing scheme are considered to improve the cell delay, latency, and area-time (AT) complexity. The proposed method has the features of regularity, modularity, and unidirectional data flow and offers a considerable improvement in AT complexity compared with related multipliers. The proposed multiplier can be used as a kernel circuit for exponentiation/division and multiplication.

범자연수와 연산에 관한 수학 교과서 분석 - 일반화된 산술로서의 대수 관점을 중심으로 - (An Analysis of the Whole Numbers and Their Operations in Mathematics Textbooks: Focused on Algebra as Generalized Arithmetic)

  • 방정숙;최지영
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제50권1호
    • /
    • pp.41-59
    • /
    • 2011
  • Given the importance of algebra in the early grades, this paper analyzed the contents of whole numbers and their operations from the perspectives of generalized arithmetic. In particular, the focus of analysis was given to the properties of 0 and 1, those of operations such as commutativity, associativity, and distributivity, and the relations between operations. As such, this paper analyzed in detail how such properties and relations were introduced and expanded across different grades. It is expected that many issues in this paper will serve basic information to develop instructional materials in a way to fostering students' algebraic thinking in the elementary grades.

IEEE 754 단정도 부동 소수점 연산용 곱셈기 설계 (Design of a Floating Point Multiplier for IEEE 754 Single-Precision Operations)

  • 이주훈;정태상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.778-780
    • /
    • 1999
  • Arithmetic unit speed depends strongly on the algorithms employed to realize the basic arithmetic operations.(add, subtract multiply, and divide) and on the logic design. Recent advances in VLSI have increased the feasibility of hardware implementation of floating point arithmetic units and microprocessors require a powerful floating-point processing unit as a standard option. This paper describes the design of floating-point multiplier for IEEE 754-1985 Single-Precision operation. Booth encoding algorithm method to reduce partial products and a Wallace tree of 4-2 CSA is adopted in fraction multiplication part to generate the $32{\times}32$ single-precision product. New scheme of rounding and sticky-bit generation is adopted to reduce area and timing. Also there is a true sign generator in this design. This multiplier have been implemented in a ALTERA FLEX EPF10K70RC240-4.

  • PDF

기약 AOP를 이용한 GF(2m)상의 낮은 지연시간의 시스톨릭 곱셈기 (Low Latency Systolic Multiplier over GF(2m) Using Irreducible AOP)

  • 김기원;한승철
    • 대한임베디드공학회논문지
    • /
    • 제11권4호
    • /
    • pp.227-233
    • /
    • 2016
  • Efficient finite field arithmetic is essential for fast implementation of error correcting codes and cryptographic applications. Among the arithmetic operations over finite fields, the multiplication is one of the basic arithmetic operations. Therefore an efficient design of a finite field multiplier is required. In this paper, two new bit-parallel systolic multipliers for $GF(2^m)$ fields defined by AOP(all-one polynomial) have proposed. The proposed multipliers have a little bit greater space complexity but save at least 22% area complexity and 13% area-time (AT) complexity as compared to the existing multipliers using AOP. As compared to related works, we have shown that our multipliers have lower area-time complexity, cell delay, and latency. So, we expect that our multipliers are well suited to VLSI implementation.

광스위칭소자에 기반한 산술논리연산회로의 설계 (Design of An Arithmetic Logic Unit Based on Optical Switching Devices)

  • 박종현;이원주;전창호
    • 한국컴퓨터산업학회논문지
    • /
    • 제3권2호
    • /
    • pp.149-158
    • /
    • 2002
  • 본 논문에서는 광컴퓨터의 개발에 이용될 수 있는 산술논리연산회로(ALU)를 설계하고 검증한다. 전자회로 기술의 접목이 용이하고 가장 상용화가 잘된 $LiNbO_3$ 광스위칭 소자에 기반한 이 ALU는 산술논리 동작을 실행하는 연산회로, 오퍼런드와 연산결과를 저장하는 메모리 소자 그리고 명령어 선택을 위한 부가회로로 구성되며, 비트 단위 직렬 방식으로 동작하는 것이다. 본 논문에서는 또한 설계한 ALU 회로의 정확성을 검증할 수 있는 시뮬레이터를 구현하고, 일련의 기본 명령어들을 순차적으로 실행하면서 메모리와 누산기에 저장된 값의 단계적 변화를 확인하는 시뮬레이션을 통하여 설계한 ALU가 정확함을 보인다.

  • PDF

GF(2m) 상의 여분 표현을 이용한 낮은 지연시간의 몽고메리 AB2 곱셈기 (Low-latency Montgomery AB2 Multiplier Using Redundant Representation Over GF(2m)))

  • 김태완;김기원
    • 대한임베디드공학회논문지
    • /
    • 제12권1호
    • /
    • pp.11-18
    • /
    • 2017
  • Finite field arithmetic has been extensively used in error correcting codes and cryptography. Low-complexity and high-speed designs for finite field arithmetic are needed to meet the demands of wider bandwidth, better security and higher portability for personal communication device. In particular, cryptosystems in GF($2^m$) usually require computing exponentiation, division, and multiplicative inverse, which are very costly operations. These operations can be performed by computing modular AB multiplications or modular $AB^2$ multiplications. To compute these time-consuming operations, using $AB^2$ multiplications is more efficient than AB multiplications. Thus, there are needs for an efficient $AB^2$ multiplier architecture. In this paper, we propose a low latency Montgomery $AB^2$ multiplier using redundant representation over GF($2^m$). The proposed $AB^2$ multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the proposed $AB^2$ multiplier saves at least 18% area, 50% time, and 59% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as exponentiation, division, and multiplicative inverse.

$GF(2^m)$ 상의 산술연산기시스템 구성 이론 (A Construction Theory of Arithmetic Operation Unit Systems over $GF(2^m)$)

  • 박춘명;김흥수
    • 대한전자공학회논문지
    • /
    • 제27권6호
    • /
    • pp.910-920
    • /
    • 1990
  • This paper presents a method of constructing an Arithmetic Operation Unit Systems (A.O.U.S.) over Galois Field GF(2**m) for the purpose of the four arithmetical operation(addition, subtraction, multiplication and division between two elements in GF(2**mm). The proposed A.O.U.S. is constructed by following procedure. First of all, we obtained each four arithmetical operation algorithms for performing the four arithmetical operations using by mathematical properties over GF(2**m). Next, for the purpose of realizing the four arithmetical unit module (adder module, subtracter module, multiplier module and divider module), we constructed basic cells using the four arithmetical operation algorithms. Then, we realized the four Arithmetical Operation Unit Modules(A.O.U.M.) using basic cells and we constructd distributor modules for the purpose of merging A.O.U.M. with distributor modules. Finally, we constructed the A.O.U.S. over GF(2**m) by synthesizing A.O.U.M. with distributor modules. We prospect that we are able to construct an Arithmetic & Logical Operation Unit Systems (A.L.O.U.S.) if we will merge the proposed A.O.U.S. in this paper with Logical Operation Unit Systems (L.O.U.S.).

  • PDF

FUZZY TRANSPORTATION PROBLEM IS SOLVED UTILIZING SIMPLE ARITHMETIC OPERATIONS, ADVANCED CONCEPT, AND RANKING TECHNIQUES

  • V. SANGEETHA;K. THIRUSANGU;P. ELUMALAI
    • Journal of applied mathematics & informatics
    • /
    • 제41권2호
    • /
    • pp.311-320
    • /
    • 2023
  • In this article, a new penalty and different ranking algorithms are used to find the lowest transportation costs for the fuzzy transportation problem. This approach utilises different ranking techniques when dealing with triangular fuzzy numbers. Also, we find that the fuzzy transportation solution of the proposed method is the same as the Fuzzy Modified Distribution Method (FMODI) solution. Finally, examples are used to show how a problem is solved.