• Title/Summary/Keyword: basic load

Search Result 1,235, Processing Time 0.036 seconds

Student-Centered Discrete Mathematics Class with Cyber Lab (학생중심의 대학 이산수학 강의 운영사례)

  • Lee, Sang-Gu;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.33 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • This study deals with the case of student-centered discrete mathematics class with cyber lab. First, we provided lecture notes and cyber labs we developed. In particular, discrete mathematics is a course that covers the principles of algorithms. The purpose of this study is to provide students with basic mathematics, aiming to actively participate in the learning process, to improve their abilities and to reach the ultimate goal of student success with confidence. Second, based on interactions, students were able to prepare for the lectures, review, question, answer, and discussion through an usual learning management system of the school. Third, all the students generated materials through one semester, which were reported, submitted, presented and evaluated. It was possible to improve the learning effectiveness through the discussions and implementation of using some easy open source programming language and codes. Our discrete math laboratory could be practiced without any special knowledge of coding. These lecture models allow students to develop critical thinking skills while describing and presenting their learning and problem-solving processes. We share our experience and our materials including lecture note and cyber lab as well as a possible model of student-centered mathematics class that does not give too much of work load for instructors. This study shares a model that demonstrates that any professor will be able to have an individualized, customized, and creative discrete education without spending much of extra time and assistant, unlike previous research.

Environmental Impact and Water Foot Print Assessment of Pot Bearing Using Life Cycle Assessment (LCA) (LCA를 이용한 교량용 포트받침 환경영향 및 물발자국 분석)

  • Park, Jihyung;Wie, Daehyung;Ko, Kwanghoon;Hwang, Yongwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.851-857
    • /
    • 2018
  • In this research, LCA analysis of the manufacturing process of pot bearing for fixed, movable in all directions, movable in one direction was carried out to analyze the environmental load using the LCA methodology. Especially, the water footprint that has been and issue in recent years was analyzed. As a result of LCA, it was analyzed that the contribution of the plate was more than 64.2% in all of the six impact categories in the case of fixed pot bearing base, and more than 94% in the category of resource depletion and photochemical oxidant creation. In the case of all direction pot bearing and one direction pot bearing, the contribution of PTFE was the highest in the global warming and stratospheric ozone depletion, and the contribution by the plate was higher in the other impact categories. The water footprint of each type of pot bearing was analyzed as $22.4m^3\;H_2O\;eq/kg$ for one direction pot bearing, $17.1m^3\;H_2O\;eq/kg$ for fixed pot bearing, and $14.1m^3\;H_2O\;eq/kg$ for all direction pot bearing. As a result of life cycle analysis, the contribution of water use in manufacturing was more than 65% in all three types. The results of this study can be used as basic data for decision making in construction method and material selection of bridges in the future.

A study on the field application of high strength steel pipe reinforcement grouting (고강도 강관 보강 그라우팅의 현장 적용성에 관한 연구)

  • Shin, Hyunkang;Jung, Hyuksang;Ryu, Yongsun;Kim, Donghoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.455-478
    • /
    • 2019
  • In this paper, we conducted experimental investigation on the field applicability through the verification of reinforcement effect of the steel pipe reinforcement grouting using high strength steel pipe. SGT275 (formerly known as STK400) steel pipe is generally applied to the traditional steel pipe reinforcement grouting method. However, the analysis of tunnel collapse cases applying the steel pipe reinforcement grouting shows that there are cases where the excessive bending and breakage of steel pipe occur. One of the reasons causing these collapses is the lack of steel pipe stiffness responding to the loosening load of tunnels caused by excavation. The strength of steel pipe has increased due to the recent development of high strength steel pipe (SGT550). However, since research on the reinforcement method considering strength increase is insufficient, there is a need for research on this. Therefore, in this study, we conducted experiments on the tensile and bending strength based on various conditions between high strength steel pipe, and carried out basic research on effective field application depending on the strength difference of steel pipe through the conventional design method. In particular, we verified the reinforcement effect of high strength steel pipe through the measurement results of deformed shape and stress of steel pipe arising from excavation after constructing high strength steel pipe and general steel pipe at actual sites. The research results show that high strength steel pipe has excellent bending strength and the reinforcement effect of reinforced grouting. Further, it is expected that high strength steel pipe will have an arching effect thanks to strength increase.

Smart City Energy Inclusion, Towards Becoming a Better Place to Live

  • Cha, Sang-Ryong
    • World Technopolis Review
    • /
    • v.8 no.1
    • /
    • pp.59-70
    • /
    • 2019
  • Where is a better place to live? In the coming era, this should be more than simply a livable place. It should be an adaptable place that has a flexible system adaptable to any new situation in terms of diversity. Customization and real-time operation are needed in order to realize this technologically. We expect a smart city to have a flexible system that applies technologies of self-monitoring and self-response, thereby being a promising city model towards being a better place to live. Energy demand and supply is a crucial issue concerning our expectations for the flexible system of a smart city because it is indispensable to comfortable living, especially city living. Although it may seem that energy diversification, such as the energy mix of a country, is a matter of overriding concern, the central point is the scale of place to build grids for realizing sustainable urban energy systems. A traditional hard energy path supported by huge centralized energy systems based on fossil and nuclear fuels on a national scale has already faced difficult problems, particularly in terms of energy flexibility/resilience. On the other hand, an alternative soft energy path consisting of small diversified energy systems based on renewable energy sources on a local scale has limitations regarding stability, variability, and supply potential despite the relatively light economic/technological burden that must be assumed to realize it. As another alternative, we can adopt a holonic path incorporating an alternative soft energy path with a traditional hard energy path complimentarily based on load management. This has a high affinity with the flexible system of a smart city. At a system level, the purpose of all of the paths mentioned above is not energy itself but the service it provides. If the expected energy service is fixed, the conclusive factor in choosing a more appropriate system is accessibility to the energy service. Accessibility refers to reliability and affordability; the former encompasses the level of energy self-sufficiency, and the latter encompasses the extent of energy saving. From this point of view, it seems that the small diversified energy systems of a soft energy path have a clear advantage over the huge centralized energy systems of a hard energy path. However, some insuperable limitations still remain, so it is reasonable to consider both energy systems continuing to coexist in a multiplexing energy system employing a holonic path to create and maintain reliable and affordable access to energy services that cover households'/enterprises' basic energy needs. If this is embodied in a smart city concept, this is nothing else but smart energy inclusion. In Japan, following the Fukushima nuclear accident in 2011, a trend towards small diversified energy systems of a soft energy path intensified in order to realize a nuclear-free society. As a result, the Government of Japan proclaimed in its Fifth Strategic Energy Plan that renewable energy must be the main source of power in Japan by 2050. Accordingly, Sony vowed that all the energy it uses would come from renewable sources by 2040. In this situation, it is expected that smart energy inclusion will be achieved by the Japanese version of a smart grid based on the concept of a minimum cost scheme and demand response.

Analysis of Equivalent Torque of 78 kW Agricultural Tractor during Rotary Tillage (78 kW급 농업용 트랙터의 로타리 경운 작업에 따른 등가 토크 분석)

  • Baek, Seung-Min;Kim, Wan-Soo;Park, Seong-Un;Kim, Yong-Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.359-365
    • /
    • 2019
  • This paper is a basic study for the performance evaluation, durability improvement and optimal design of tractor transmission. The engine torque of the 78 kW agricultural tractor during rotary tillage was measured using CAN communication. It was calculated with equivalent torque and then analyzed. In order to develop a reliable tractor, it is important to convert measured torque in various agricultural operations into equivalent torque and analyze it. The equivalent torque was calculated using Palmgren-Miner's rule, which is a representative cumulative damage law. The equivalent torque of rotary tillage period and steering period are 229.2 and 136.7 Nm, respectively. The maximum and average torque during rotary tillage period are 336.0 and 234.4 Nm, respectively. The maximum and average torque of the steering period are 288.0 and 134.6 Nm, respectively. The engine torque in rotary tillage period is higher than in the steering period because of cultivation of soil through PTO. The maximum and rated torque of engine are 387.0 and 323.0 Nm, respectively, which are 183% and 136% higher than the equivalent torque during rotary tillage and of steering section. Because transmission of agricultural tractor in Korea companies is generally designed by the rated torque of engine, there is a difference from measured torque during agricultural operations. Therefore, it is necessary to consider it for optimal design.

A Study on the optimized Performance Designing of the Window of the Apartment based on the Annual Energy Demand Analysis according to the Azimuth Angle applying the Solar Heat Gain Coefficient of the Window (창호에 SHGC를 반영한 공동주택의 방위각별 에너지 효율성 평가를 통한 합리적인 창호 계획 방안 연구)

  • Lee, Jang-bum
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.11
    • /
    • pp.25-34
    • /
    • 2019
  • It is important to design windows in a reasonable way considering the performance characteristics of the elements of the window rather than just to increase the thermal energy performance of the window. In this study, the Heat-transfer Coefficient as insulation performance of the windows and together with the grade of the glass's SHGC (Solar Heat Gain Coefficient) were analyzed to relate to the energy efficiency performance of the building by azimuth angle. Based on this basic study, the Heat-transfer Coefficient of windows and the SHGC rating of glass were applied to the unit plan of apartment building, and the Heating and Cooling Demand were analyzed by azimuth angle. Apartment plan types were divided into 2 types of Non-extension and extension of balcony. The designPH analysis data derived from the variant of the Heat-transfer Coefficient and SHGC, were put into PHPP(Passive House Planning Package) to analyze precisely the energy efficiency(Heating and Cooling Demands) of the building by azimuth angle. In addition, assuming the 'ㅁ' shape layout, energy efficiency performance and potential of PV Panel installation also were analyzed by floors and azimuth angle, reflecting the shading effects by surrounding buildings. As the results of the study, the effect of Heat Gain by SHGC was greater than Heat Loss due to the Heat-transfer Coefficient. So it is more effective to increase SHGC to satisfy the same Heating Demand, and increasing SHGC made possible to design windows with low Heat-transfer Coefficient. It was also revealed that the difference in annual Heating and Cooling Demands between the low, mid and high floor households is significantly high. In addition to it, the installation of PV Panel in the form of a shading canopy over the window reduces the Cooling Load while at the same time producing electricity, and also confirmed that absolute thermal energy efficiency could not be maximized without controlling the thermal bridge and ventilation problems as important heat loss factors.

Design of a Secure Web-mail System based on End-to-End (End-to-End 기반의 안전한 웹 메일 시스템 설계)

  • 전철우;이종후;이상호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.2
    • /
    • pp.13-29
    • /
    • 2003
  • Web-mail system is worthy of note as a next generation e-mail system for its mobility and easiness. But many web-mail system does not have any kind of security mechanism. Even if web-mail system provides security services, its degree of strength is too low. Using these web-mail systems, the e-mail is tabbed, modified or forged by attacker easily. To solve these problems, we design and implement secure web-mail system based on the international e-mail security standard S/MIME in this thesis. This secure web-mail system is composed of server system and client system The server system performs basic mail functions - sending/receiving the mails, storing the mails, and management of user information, etc. And the client system performs cryptographic functions - encryption/decryption of the mails, digital signing and validation, etc. Because client system performs cryptographic functions this secure web-mail system gives its reliability and safety, and provides end-to-end security between mail users. Also, this secure web-mail system increase system efficiency by minimize server load.

Ground Separation Test to Verify Separation Stability of External Fuel Tank (외부연료탱크의 분리 안정성 검증을 위한 지상 분리시험)

  • Kim, Hyun-gi;Hong, Seung-ho;Ha, Byung-geun;Kim, Sung-chan;Lee, Jun-won
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.99-104
    • /
    • 2022
  • Aircraft pylon connects the engine or external stores to the main wing, and transfers the load acting on the pylon to the main structure of the aircraft. In particular, it should perform the function of separating the external store mounted on the pylon in case of emergency or mission performance. At this time, if the separation of the external store is not performed properly due to peripheral air flow or functional problems during the separation process of the external store, it may seriously impact the survivability of the aircraft. For this reason, to apply an external attachment to an aircraft, it is necessary to prove the stability of the external attachment in the separation situation in advance. In this paper, we present the result of the ground separation test performed to confirm that the external fuel tank, which is an external attachment, can be safely separated from the pylon. As a result of the test, the separation movement of the external fuel tank was measured with a high-speed camera, and the stability of the separation of the external fuel tank from the pylon were confirmed through the ground separation test. Additionally, the test result provides basic data for the stability evaluation of the separation of external attachments in actual aircraft.

Numerical Analysis of Hinge Joints in Modular Structures Based on the Finite Element Analysis of Joints (접합부 유한요소해석을 바탕으로 한 모듈러 구조물의 힌지접합부 수치해석적 연구)

  • Kim, Moon-Chan;Hong, Gi-Suop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • This paper introduces research on the hinge joint of modular structure joints using finite element analysis. The modular structure has a characteristic in that it is difficult to expect the integrity of columns and beams between unit modules because the construction is carried out such that the modules are stacked. However, the current modular design ignores these structural characteristics, considers the moment transmission for the lateral force, and analyzes it in the same manner as the existing steel structure. Moreover, to fasten the moment bonding, bolts are fastened outside and inside the module, resulting in an unreasonable situation in which the finish is added after assembly. To consider the characteristics that are difficult to expect, such as unity, a modular structure system using hinge joints was proposed. This paper proposed and reviewed the basic theory of joints by devising a modified scissors model that is modified from the scissors model used in other research to verify the transmission of load when changing from the existing moment junction to a hinge junction. Based on the basics, the results were verified by comparing them with Midas Gen, a structural analysis program. Additionally, the member strength and usability were reviewed by changing the modular structure designed as a moment joint to a hinge joint.

Study on the Identification of Ship Maneuverability Required for Navigational Officers based on AHP Analysis (AHP 분석 기반 항해사 필요 선박조종성능 식별 연구)

  • Kang, Suk-Young;Ahn, Young-Joong;Yu, Yong-Ung;Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.800-808
    • /
    • 2022
  • The International Maritime Organization adopted the interim standards for ship maneuverability in November 1993 for preventing collision of ships at sea and for protecting the marine environment, and based on the accumulated data, in December 2002, the established standards for ship maneuverability were adopted. However, the standards adopted are those at full load, even keel, and at least 90 % of the ship speed at 85 % of the ship's maximum power. Moreover, these standards have limitations in providing information on maneuverability under actual navigational conditions. Therefore, in this study, frequency analysis AHP analysis techniques were studied by consulting navigational officers, captains, and experts, who have significant knowledge on ship maneuverability, utilization of the current standards, and the information necessary for the operation of the actual ship. The results of this study confirmed that the necessary information on maneuverability for the navigational officer operating the vessel is information about the turning circle at a small angle of 5°-10° and z-test information at maneuvering speed, not sea speed. Additionally, in relation to speed control, additional information on deceleration inertia and acceleration inertia is needed than the information on the stopping ability at sea speed and full loaded condition. The derived results are considered to be useful as basic data for preparing guidelines for ship maneuverability necessary for navigational of icers who operate ships.