• Title/Summary/Keyword: base space

Search Result 1,093, Processing Time 0.029 seconds

Aerodynamic Problems of Launch Vehicles

  • Chou, Kyong-Chol
    • Journal of Astronomy and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.5-21
    • /
    • 1984
  • The airflow along the surface of a launch vehicle together with base flow of clustered nozzles cause problems which may affect the stability or efficiency of the entire vehicle. The problem may occur when the vehicle is on the launching pad or even during flight. As for such problems, local steady-state loads, overall steady-state loads, buffet, ground wind loads, base heating and rocket-nozzle hinge moments are examined here specifically.

  • PDF

CONFORMALLY FLAT WARPED PRODUCT RIEMANNIAN MANIFOLDS

  • Kim, Byung-Hak;Kim, In-Bae;Lee, Sang-Deok;Choi, Jin-Hyuk
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.297-303
    • /
    • 2000
  • We investigate the conformally flat warped product manifolds and study the geometric structure of the base space and each fibre. Moreover we find the conditions that the base space and each fibres to be the space of constant curvatures.

Implementation of 3D Motion Simulator with Two Degrees of Freedom (2자유도를 갖는 3차원 운동 시뮬레이터 연구)

  • Choi, Myoung-Hwan;Kim, Young-Jin
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.81-88
    • /
    • 2001
  • In this work, we have developed a 2 degrees of freedom(DOF) motion simulator that can generate the sensation of motion in a 6 DOF space. The motion base has the DOF of roll and pitch, and the purpose of the motion base is to create the sensation of riding a vehicle in a 3D space by controlling the motion base. The dynamics of the mechanism was analysed and the optimal design of the motion base mechanism has been reached. The prototype motion base mechanism was developed and tested. The multi-axis motion controller(MMC) was used to control the two AC servo meters that drive the roll and pitch motion.

  • PDF

A State-Space Transient Response Analysis of Rotor-Bearing System with Base Excitation (기초가진 로터-베어링 시스템의 상태공간 과도응답해석)

  • 이안성;김병옥;김영철;김영춘
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.669-674
    • /
    • 2004
  • In this study, the analytical method to evaluate the response of rotor-bearing system subjected to base excitation was presented. The equations of motion contain speed dependent gyroscopic terms, base rotation dependent parametric terms and several forcing function terms which depend on linear accelerations, rotational accelerations and a combination of linear and rotational combination. The study of rotor-bearing system excited by its base motion is not only able to predict the rotational performance, but provides the fundamental data for vibration isolation. In order to illustrate transient response, transient response analysis of a practical application sample were performed. The transient response was carried out for the given base excitation by using the state-space Newmark method that incorporates the average velocity concept.

  • PDF

The Research of 2 DOF 3D Motion Simulator (2 DOF 3D 운동 시뮬례이터 실험)

  • 김영진;최명환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.260-260
    • /
    • 2000
  • In this work, we have developed a 2 degree of freedom(DOF) motion simulator that can generate the sensation of motion in a 6 DOF space. The motion base has the DOF of roll and pitch, and the purpose of the motion base is to create the sensation of riding a vehicle in a 3D space by controlling the motion base. The dynamics of the mechanism was analysed and the optimal design of the motion base mechanism has been reached. The prototype motion base mechanism was developed and tested. The multi-axis motion controller(MMC) was used to control the two ac servo motors that drive the roll and pitch motion.

  • PDF

Mechanical design of mounts for IGRINS focal plane array

  • Oh, Jae Sok;Park, Chan;Cha, Sang-Mok;Yuk, In-Soo;Park, Kwijong;Kim, Kang-Min;Chun, Moo-Young;Ko, Kyeongyeon;Oh, Heeyoung;Jeong, Ueejeong;Nah, Jakyuong;Lee, Hanshin;Pavel, Michael;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.53.2-53.2
    • /
    • 2014
  • IGRINS, the Immersion GRating INfrared Spectrometer, is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG focal plane array (FPA) detectors. The mechanical mounts for these detectors serves a critical function in the overall instrument design: Optically, they permit the only positional compensation in the otherwise "build to print" design. Thermally, they permit setting and control of the detector operating temperature independently of the cryostat bench. We present the design and fabrication of the mechanical mount as a single module. The detector mount includes the array housing, a housing for the SIDECAR ASIC, a field flattener lens holder, and a support base. The detector and ASIC housing will be kept at 65 K and the support base at 130 K. G10 supports thermally isolate the detector and ASIC housing from the support base. The field flattening lens holder attaches directly to the FPA array housing and holds the lens with a six-point kinematic mount. Fine adjustment features permit changes in axial position and in yaw and pitch angles. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the computer simulation, the designed detector mount meets the optical and thermal requirements very well.

  • PDF

Power-Space Functions in High Speed Railway Wireless Communications

  • Dong, Yunquan;Zhang, Chenshuang;Fan, Pingyi;Fan, Pingzhi
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.231-240
    • /
    • 2015
  • To facilitate the base station planning in high speed railway communication systems, it is necessary to consider the functional relationships between the base station transmit power and space parameters such as train velocity and cell radius. Since these functions are able to present some inherent system properties determined by its spatial topology, they will be referred to as the power-space functions in this paper. In light of the fact that the line-of-sight path persists the most power of the received signal of each passing train, this paper considers the average transmission rate and bounds on power-space functions based on the additive white Gaussian noise channel (AWGN) model. As shown by Monte Carlo simulations, using AWGN channel instead of Rician channel introduces very small approximation errors, but a tractable mathematical framework and insightful results. Particularly, lower bounds and upper bounds on the average transmission rate, as well as transmit power as functions of train velocity and cell radius are presented in this paper. It is also proved that to maintain a fixed amount of service or a fixed average transmission rate, the transmit power of a base station needs to be increased exponentially, if the train velocity or cell radius is increased, respectively.

Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms

  • Shallan, Osman;Maaly, Hassan M.;Sagiroglu, Merve;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.221-231
    • /
    • 2019
  • This paper performs for the first time a simultaneous optimization for members sections along with semi-rigid beam-to-column connections for space steel frames with fixed, semi-rigid, and hinged bases using a biogeography-based optimization algorithm (BBO) and a genetic algorithm (GA). Furthermore, a member's sections optimization for a fully fixed space frame is carried out. A real and accurate simulation of semi-rigid connection behavior is considered in this study, where the semi-rigid base connections are simulated using Kanvinde and Grilli (2012) nonlinear model, which considers deformations in different base connection components under the applied loads, while beam-to-column connections are modeled using the familiar Frye and Morris (1975) nonlinear polynomial model. Moreover, the $P-{\Delta}$ effect and geometric nonlinearity are considered. AISC-LRFD (2016) specification constraints of the stress and displacement are considered as well as section size fitting constraints. The optimization is applied to two benchmark space frame examples to inspect the effect of semi-rigidity on frame weight and drift using BBO and GA algorithms.

ON FIBRED KAEHLERIAN SPACES

  • Choi, Jin Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.417-426
    • /
    • 2006
  • In this paper, we are to construct a new fibred Riemannian space with almost complex structure from the lift of an almost contact structures of the base space and that of each fibre. Moreover, we deal with the fibred Riemannian space with various Kaehlerian structure.

  • PDF